AD-771 428

PROJECT MAC PROGRESS REPORT X, JULY
1972-JUNE 1973

E. Fredkin

Massachusetts Institute of Technology

Prepared for:

Office of Naval Research

December 1973

DISTRIBUTED BY:

National Techuical information Service

IOGCRAPHIC DATA

. Report No. ‘ 1 3
SHEEY

Progress Report X

. Title and Subcitle

Project MAC Progress Report X

3. Recipient’s Accession No,
3 Eepon E-re é E—
December, 1973

6.)

TPWy6ét MAC participants-Prof. E. Fredkin, Director

8. Performing Organization Repro

NomMAC-PR-10

9. Petforming Otganization Name and Address

Massachusetts Institute of Technology
Projsct MAC

545 Technology Square, Cambridge, Mass. 02138

10. Project/Task/Work Unn No. |

11, Conttact /Gram No.

N00014-70-2-0362-0001
N00014-70-A-0362-2046

12. Sponsoring Organization Name aad Address
Advanced Research Projects Agency
3D-200 Pentagon
Washington, D.C. 20301

13. Type of Report & Period
Coveted Progress Rpt

6/72-6/73

4.

15. Supplementary Notes

16. Abstraces

riod 6/72-6/73.

inal Summary Report of Progress made at Project MAC during the

. Key Words and Document Anslysis. 176 Descripocs .
Real-Time Computers Programming Languages

On-Line Computers Computation Structures
Multi-Access Computers Automata Theory
Dynamic Modeling

Heterarchical Programming

Computer Systems

Artificial Intelligence

Computer Languages

Computer Networks

Information Systems

17b. eatifiecs/Open-Ended Terms

Repraduced by
NATIONAL TECHNICAL
INFORMATION SERVICE

US Deparment of Commerce
Springtisld, YA, 21N

17e. COSATI Field/Group

FORM NTI1$-38 IREY, 3-73)

THIS FORM MAY BE REPRODUCED

18. Availability St . Security Class (This 21 g of Pages
This document has been approved for public Report) 15%pp.
release and sale; its distxibution is writy Class (This 5. Price 7 |
unlimited. Pj'!ll:l ASSIFIED | 4. 74~

1 HE MM u.u-’n'
iy d

PROJECT MAC PROGRESS REPORT X

ib.

Other Research - l
Publications -

PREFACE

I.

II.

III.

TABLE OF CONTENTS

COMPUTER SYSTEMS RESLARCH

A.

B.

Introduction

Measurcment and Analysis of Computer
Syvstums

ARPA Network Activities

Protection of Information
Miscellaneous Activities

PROGRAMMING TECHNOLOGY

A.
B.

Introduction

The Dynamic Modeling System as a Software

Laboratory

1. MUDDLE
2. CALICO
3. IRS

4. Graphics

5. Hardware and ITS System Deve .opment

6. Applications Programs
Computer-Aided Programming
Computer Networks
Automatic Programming

AUTOMATIC PROGRAMMING DIVISION
Introduction
Automatic Programming Group

A. Introduction

B. MAPL

C. Debugging Models

D. English Lanquag Input

E. Translation intoc PL/I

Mathlab Group

A, Introduction

B. Hardware lmprovements to the Mathlab
PDP-10

C. Improvements to MAC-LISP

D. ARPA Network

E. New and Improved Subsystems in
MACSYMA

F. Work in Progress

G. The Hensel Lemma in Polynomial
Manipulation

Planner

A. Introduction

B. Intrinsic Computation

C. Adding and Reorganizing Knowledge

D. Unification

E. Hierarchies

F. Syntactic Sugar

G. Actor Transmission

H. Side tffects

I. Many Happv Returns

J. Data Bases

K. Pattern Uirected Invocation

-ig,

iii

B

97

98
104
104
106
107
111
113
114
116
117

Iv.

v.

TABLE OF CONTENTS {(continued)

L. McCarthy and the Airport
M. Logic and Planning
N. General Principles

OTHER RESEARCH

PROJECT MAC PUBLICATIONS.

-ifi-

117
119
127
131

133

PREFACE

Project MAC was organized at the Massachusetts Institute
of ‘vechnology in the spring of 1963 for the purpose of conduc-
ting research in the fields of Machine Aided Cognition and
Multiple-Access Computer systems. This research has led to
the development of many innovations in computer technology,
among them the development of the Compatible Time~-Sharing Sys-
tem (CTSS) and Multics.

During the year ending June 30, 1973, Project MAC was re-
organized into four major divisions: Fundamental Studies,
Computer Systems Research, Programming Technology, and Auto-
matic Programming (including Mathlab and PLANNER). MAC has
294 people associated with it, including: 28 faculty members
mostly from the Electrical Engineering and the Mathematics
departments; 49 staff members (DSR Staff and support staff):;
105 graduate students; 73 undergraduates and 7 guests.,

The Fundamental Studies division consists of two sub-
groups. The Theory of Computation group has been involved
in the investigation and characterization of various complex
logical and linguistic problems in order to find more effici-
ent methods of computation. The Computation Structures Group
has been investigating the dynamics of interacting systems
and the structure of the individual systems in order to place
computer systems design on a more rational basis.

The Computer Systems Research division has been respon-
sible for the development of the Multics System in conjunction
with Honeywell, Inc. During the past year, Honeywell announced
that Multics would be offered as a standard product using
their 6180 computer system. This marks the completion of Pro-
ject MAC's involvement with Multics, which began in 1964. The
activities of the Computer Systems research division have
therefore become concerned less with prcfessional programming
development and more with academically oriented research, es-
pecially in the field of protection of information within a
multiple access computer system. In addition, research is
being conducted on ARPA network protocols and modifications,
and the development of models of the jobs presented to the
Multics system and the system's response to them,

The Prcgramming Technology Livision has been mainly con-
cerned with the development of the "Dynamic Modeling" computer
system (D.M.S.) as a software laboratory for research in pro-
gramming. The system is intended to facilitate the formula-
tion of computer programs by the development of more effici-
ent utilities, the use of on-line interaction between program-
mer and system, powerful high-level languages, graphic as
well as alphanumeric display, and on-line library and documen-
tation of procedures and data.

The Automatic Programming Division consists of three sub-
groups: the Automatic Programming group, Mathlab, and PLANNER.
The Automatic Programming group has been concerned with devel-
opment of a system which can represent knowledge about a known
problem on a higher level of abstraction than has previously
been possible. The models which have been used in developing
this system include Management Data Processing and information

-iii-

and decision systems. Its purpose is to manipulate domains
where much is already known about a given problem, hut where
there are no means for considering sub-contexts within the
domain.

Mathlab's largest contribution this year has been the
implementation of the MACSYMA System with M.I.T. and around
the country. Further work is being done to debug this sys-
tem, in addition to which MACSYMA has been made operaticual
within the Multics system.

Project MAC has been sponsoring the development of
PLANNER in conjunction with the Artificial Intelligence Lab-
oratory. PLANNER is a system concerned with the development
of knowledge-based programming, that is, a program which has
significant knowledge of its own structure and purposes.
This system is based not on a hierarchical approach, but
rather a modular one. These modules are called actors. The
PLANNER group has also been working on the construction of
a Programming Apprentice which will make it easier for ex-
pert programmers to do knowledge-based programming.

In addition to these four major areas of research,
Project MAC participated in a scientific exchange program
between the National Academy of Sciences of the U.S.A. and
the Academy of Sciences of the U.S.S.R. Professor Victor
Briabrin visited us from Moscow during the period of October
1972 to April 1973, during which time he studied various
high-level programming languages (such as LISP, CONNIVER,
and PLANNER) in order to compare them with similar programs
being developed in the U.S.S.R.

During the past year the basic program of Project MAC
was funded by the Advanced Ressarch Projects Agency (ARPA)
and, in the area of Fundamental Studies, by the National
Science Foundation (NSF). Individual projects were supported
by the Rome Air Development Center, and IBM.

-jy-

Prof.

Prof.

G. B.
A. D,
B. H.

c. p.

E. Fredkin
S. S. Patil
Scanlon
Walker
Egendorf
Kohl

Doyle

R. Elkin

Bankole-Wright

Brown
Cavallaro
Combs
Darcy

Gammell

D. Kontrimus

ADMINISTRATION

Director

Assistant Director
Administrative Officer
Business Manager

Director of Information Services

Librarian

Administrative Assistant

Undergraduate Students

Support Staff

E. Y. Lewis
M. K. Martucci
E. T. Moore
D. S. Niver
E. M. Roderick

M. A. Stein

-v-

COMPUTER SYSTEMS RESEARCH

Academic Staff

Prof. F. J. Corbat$ Prof. M.

Prof. J. H. Saltzer

D. Schroeder

DSR Staff
C. C. Garman E. W. Meyer, Jr. K. T. Pogran
R. K. Kanodia N. I. Morris M. B. Weaver
R. F. Mabee M. A. Padlipsky D. M. Wells
K. J. Martin
Graduate Students
D. D. Clark S. M, Hansen L. J. Scheffler
R. J. Feiertag D. H. Hunt A, Eekino
R. M, Frankston S. Kuo J. A, Stern
B. S. Greenberg P. A, Janson V. L. Voydock _
Undergraduate Students
R. G, Bratt P. A. Green A. Nourse
D. Bricklin M. Gross J. A, Pineda
J. M. Broughton R. H., Gumpertz D. P. Reed
M. G. Chang G. Harris C. D. Tavares
T. L. Davenport P. A. Karger J. B. williams, Jr.
L. J. DeRoma R. S. Lamson J. D. williams
D. K. Gifford D. A. Moon
Support Staff
0. D. Carey C. P. Doyle D. L. Jones
D. E. Cohen S. D. Grant M. F. Webber

COMPUTER SYSTEMS RESEARCH

Guests
Prof. K. Ikeda M, Mivazaki

K. Oda

COMPUTER SYSTEMS RESEARCH

A. INTRODUCTION

The most significant benchmark this year was the
announcement by Honeywell Information Systems, Inc. that
the Multics system, the object of a joint research and
development project since 1964, would be offered as a
standard product using their 6180 computer system. This
announcement heralds completion not only of the Multics
project itself, but also of the successful transfer of
cxpertise and knowledge from Project MAC to Honeywell, so
that both maintenance and development can continue in
Honeywell's hands.

The year was also marked by a continuing, and now
essentially complete, transition of the Computer Systems
Research Division from a professional programming develop-
ment team to an academically oriented research organization.
Thus, the number of undergraduate and graduate students in
the division has climbed from a low of two (in 1966) to 23,
and the number of professional programmers has dropped from
a high of about 28 (in 1967} to six. Correspondingly, the
activities of the division have shifted to research topics
which can take advantage of the unique laboratory environ-
ment represented by Multics.

These activities fall into four major categories of
Computer Systems Research. The first category is measure-
ment of statistical properties of the presented load on the
M.I.T. production Multics site, and development of models of
both the presented load and of the system's response to that
load. Judging from the number of spontaneous inquiries, both
the measurements themselves and the models are of great
current interest tc manufacturers who seem to be developing
product lines with virtual memory and other sophisticated
features. The second category of activities are those re-
lated to the ARPA network, both working with other network
participants in developing protocols, and also in modifica-
tion to the Multics/ARPANET interface to respond to new
protocols and to better integrate the ARPANET as a standard
facility of a computer utility. The third category of
activity is advanced research on the protection of share-
able information stored in a multiple-access computer
utility. This topic has recently become one of high
interest, with IBM and several other organizations rushing
to obtain some useful results. Since our group has had a
long-standing interest in the subject, it is tackling some
relatively advanced problems in the area: better definition
of the essential central security kernel of a general purpose
system, and methods of certifying the correctness of an
implementation of that kernel. The fourth and final cate-
gory of activities are several joint projects with other
groups which, as will be explained in detail later, support
the general research goals of the division.

COMPUTER SYSTEMS RESEARCH

B. MEASUREMENT AND ANALYSIS OF COMPUTER SYSTEMS

Activities in measurement and analysis have been almost
exclusively the province of students. The objective in
this area is to learn how to predict the performance cffect
of a proposed system design. On the hypothesis that many
future system designs will have functional properties
similar to those of Multics, it is an especially interesting
system to measure. The availability of a measureable system
running with a real load has led to a burst of activity in
this area, and the performance of a wide variety of measure-
ments:

® A doctoral thesis developing a hierarchical model of
the Multics multiprogramming and demand paging algorithms
was completed by Akira Sekino. This thesis was significant
for its ability to predict the actual performance of Multics
under load, yet using mathematically tractable models. The
thesis is available as Project MAC Technical Raport TR-103.

® In last year's progress report, a linear model of
paging behavior was reported. The model relates the number
of memory references (the "headway") between missing pages
to the size of the paging memory. For memory sizes below

4 million words, a simple, linear relation was observed.
During this year, a paper was written and submitted
describing the model, and further measurements have been
made exploring the shape of the headway function in the
region above 4 million words. These measurements indicate
that the linear approximation describes the behavior of

the M.I.T. Multics installation quite accurately for memory
sizes up to 8 million words, but that an exponential
approximation may be better above that point. These
reasurements are of considerable interest to system de=-
signers, who need information about the potential performance
effect cof the large primary memory systems which are be-
cominj economically feasible with recent advances in Large
Scale Integration (LSI) production technology. A Master's
thesis by Bernard Greenberg will be available in a Project
MAC Technical Report.

® A method of measuring a single user's load on primary
memory in a paging environment, in order to estimate program
"size" and also to provide a reasonable charge for usage

was tried, evaluated, and then added to the standard Multics
system. The principle of the method is as follows: for a
given size of memory, a “large" program would be expected

to cause more missing page faults than a "small"” program,
Thus, a simple page fault count could provide a crude
estimator of program size. In a multiprogramming environment,
however, the amount of memory available to a program may be
different every time the program runs. Thus, a simple page fault
count would provide a quite variable estimate. On the other
hand, since the page fault count climbs when this memory is

COMPUTER SYSTEMS RESEARCH

smaller, and vice-versa, the Eroduct of memory size and number
of page faults should be a relatively stable number, but one
which is larger for largzr programs. (To the extent that an
individual program follows the linear paging model, the measure
should be perfectly constant with different memory sizes.) The
new charging scheme uses this general strategy, and produces a
memory usage measure which seems to be proportional to program
size, and which varies with a ten-fold change in memory size by
no more than 30 to 50%. Currently, this scheme is documented
in the form of three¢ internal working papers, two by Robert
Frankston, and one by Prof. J. Saltzer.

. In early 1972, a drum space allocation and access reguest
scheduling strateqgy called "folding" was implemented on the
Multics system. This algorithm traded effective drum storage
capacity for drum access time by maintaining multiple identical
copies of each page on the drum, spaced equally around the drum
circumference. When a page on the drum is to be read, the copy
closest to the drum read heads is used, thereby reducing the
drum access time,

The reduction of drum size due to folding causes a redistri-
bution of secondary memory access requests between drum and disk
(the third level of memory). An analytic model of the drum
behavior under the folding strategy (a variation of a model due
to Coffman) was constructed, and using the previously mentioned
"linear model” for the paging behavior of the Multics system,
an analysis was developed to predict the mean access time of the
combined drum~disk memory system as a function of the number of
drum folds. Experiments were conducted with several possible
configurations of the Multics system under a benchmark load to
verify the analysis, and to verify that the number of drum folds
actually being used in normal Multics service is optimum. A
paper describing these results, by Lee Scheffler, has been sub-
mitted to the Fourth ACM Conference on Operating Systems
Principles, to be held in October, 1973.

® In the past, disk subsystem design, equipment and confiqura-
tion selection, and nterface algorithm decisions have usually
beer. made informally, without hard data to compare the perform-
ances of alternative disk subsystem architectures. A class of
infinite-population gueueing network models are being developed
for predicting the probability density function of disk sub-
system access time, given specifications of disk subsystem
equipment, configuration, and load of arriving access requests.
The models are unique in that they are effective for the types
of loads typically encountered in virtual memory systems which
u.e the disk subsystem as a paging device. The models and
analysis methods are applicable to a wide range of disk sub-
system types, including both fixed- and movable-head disks,
single or multiple channel disk subsystems, and non-pre-emptive
priority arrangements for expediting the service of some access
requests at the expense of others. Straightforward analytic

methods are used to derive relationships between access time,

configuration, and load, which are then solved numerically. A

COMPUTER SYSTEMS RESEARCH

set of programs have been developed which evaluate the models
and can be used to experiment with proposed disk subsystem
configurations. A Master's thesis describing this work, by
Lee Scheffler, is in preparation.

L] Many problems in computer system performance modelling and
evaluation require the manipulation of probability density
functions and the solution of complex queueing system problems.
Analytic methods are of limited applicability to such problems
because unrealistic assumptions often must be made in the name
of mathematical tractibility. 1In the course of research on

disk subsystem performance evaluation, a system of programs was
developed on Multics for performing numerical computations on
probability density functions. Several basic primitives are
currently implemented for: creating probability density functions
of the common analytic shapes (exponential, hyperexponential,
Erlang, normal, uniform, impulse), or any combination of these,
or of any shape specified by a table of sample points; for com-
bining probability density functions (weighted summation, con-
volution); and for displaying computing statistics (mean,
variance, ;ercentile points), and computing derived probability
functions (cumulative probability distribution functions). These
basic primitives are combined with iterative techniques for the
solution ot simple G/G/n queueing systems (General arrival dis-
cipline/General service discipline/n independent identical
servers), and for more complex queueing systems. It is expected
that, as oserfurmace evaluation research continues, this system
of programs prepared by Lee Scheffler will see use in the con-
struction and solution of more accurate models of computer
system performance.

® In systems with virtual memory, dynamic control of the

level of multiprogramming is needed to maintain & balance

between unusable idle time and time spent doing page retrieval,
such that overall system throughput is optimal. For dynamic
contrnl, a simple method of estimating the size of each program
is needed. A new estimating algorithm, based on extrapolation

of the previously observed paging rate of a process, (using the
linear paging model for extrapolation) was proposed and imple-
mented, in a test version of Multics. Measurements are not yet
complete, but the scheme has already proven to be at least as
effective as the currently implemented, very complex, heuristic
estimator. There is now growing evidence that the earlier, first
attempt at an estimating algorithm treats large programs very
poorly. An undergraduate thesis by David Reed has been completed
on this subject and he is continuing to experiment with the
technique.

In addition to the measurement and analysis activities
mentioned above, comparison of performance of Multics on the
Honeywell 645 computer with that on the newer 6180 computer is
underway, but not yet complete. Initial results indicate that
the hardware processor is about twice as fast, and that the re-
placement of the rotating drum with a bulk core hzs reduced
multi-programming and therefore paging by enough to give an
overall performance increase factor of three between the two
systems. Also, informal measurcments of the traffic flowing
through the ARPA network attachment have been used to guide the
activities of the network group, reported in the next section.

-f-

COMPUTER SYSTEMS RESEARCH

C. ARPA NETWORK ACTIVITIES

Bccause of the large amount of production programming which
has marked the CSR division's activities in the network area in
the past, most work in this arca has been carried out by staff
programmers rather than the students. This year, student par-
ticipation is increasing. At the same time, the group is be-
coming more active in network development activities.

Two significant revisions of the Multics ARPA network soft-
ware were accomplished during the year. The first of these was
to revise an assumption that other hosts have relatively large
buffering capabilities. This assumption, made incorrect by wide
use of the Terminal Interface Processor, led to a design based
on servicing the network once per interaction with a human user
or his program at the other site. Widespread use of the TIP,
with its small buffers, produced traffic with many network
transactions for each message, putting a severe strain on the
initial design. The revised design, which responds to small
transactions on an interrupt basis, reduces both the real-time
delays in using Multics from the network and also the overhead
costs at the price of increased complexity in the central core
of the supervisor. The revised design has been in operation
since October, 1972, and has proven quite satisfactory,

The second major software revision was to convert from a
half-duplex network interface to a full duplex one, separating
reading and writing onto two hardware channels. This change
was made after conzcluding that the half-duplex connection is
not adequately supported by the network itself. (The network
resolves certain overload conditions in a manner which drops
links to half-duplex connections.)

The full duplex connection required a new hardware inter-
face, which was developed as an undergraduate thesis by
Richard Gumpertz, with construction help from John Williams,
another undergraduate, This new interface was also designed to
operate with either a local or a distant network interface port,
and to operate with the Honeywell 6180 IOM rather than with the
older Honeywell 645 GIOC thereby permitting these two other
changes to be anticipated and accepted smoothly. Parts and
engineering assistance were supplied by Honeywell, in return for
which Honeywell will be permitted to use the design in other
attachments of 6000-line computers to ARPA-like networks.

Related to conversion to the Honeywell 6180, which is lo-
cated in a different building, a second Interface Message Pro-
cessor (IMP) has been ordered for installation near the 6180.
This second IMP will permit attachment to the ARPANET of the
Honeywell €180 “development™ machine, the planned Project MAC
terminal system, the Artificial Intelligence Laboratory "mini-
robot", and the M.I.T. 370/165, all in addition to the present
three PDP~10's and the 6180 Multics "Service" machine.

In the protocols area, members of the group were quite
active in the evolution of the new File Transfer Protocol (used
for moving files from one system to another) and the re-design
of the Telnet Protocol (used for setting up Teletype-like

-7~

COMPUTER SYSTEMS RESEARCH

terminal connections) in conjunction with other members of the
Network Working Group. The problem of arranging for file access
while maintaining privacy was one primary issue which is still
only partly resolved. 1In another area, Michael Padlipsky has
proposed a "unified user-level protucol” which is intended to
facilitate use of different operating systems by people who
have not made themselves expert in the idiosyncrasies of those
systems, by providing a universal interface to common functions.

On the implementation level, the major addition was a File
Transfer Protocol server which responds to file transfer requests
arriving from other sites. A File Transfer command, a new
Telnet command for use from Multics in accessing other network
sites, and an I/0 system interface module which permits any
Multics program to direct input or output to a network link, are
all in experimental use in the user interface area. A first
implementation of programs which merge the ARPA network mail
facility with the Multics mail facility was completed. A fa-
cility to automatically detect the need for and perform typewriter
case-mapp.ng was added. This facility (in principle unneeded
according to network protocol rules) allows use of Multics from
sites which do not yet provide network standard upper/lower case
facilities. The re-initialization logic of the Network Control
Program has been improved, thus allowing it to automatically
respond to and reccver from a wide variety of error conditions,
The Network driver program has been revised to be compatible
with a standard interface to the system operator, and of course,
numercus bug fixes were made along the way.

Use of Multics via the ARPA network has increased over the
year. New metering and reporting software was implemented in
the Fall, which shows that logins per month increased from 254
to 950 between .September, 1972, and April, 1973. At the April
level, network use accounts for about 10% of all logins at the
M.I.T. Multics site. The metering software has also established
that in the same period, the network indirect cost (that is,
extra Multics overhead involved because the network connection
was used) has dropped from about 100% to about 7%, largely be-
cause of the software changes reported above.

D. PROTECTION OF INFORMATION

In this category of activity are several long-standing
interests as well as a substantial new activity. The long-
standing interests relate to providing mechanisms in the Multics
design which permit controlled sharing of information with
security against unauthorized intrusions.

A doctor's thesis by Michael Schroeder was completed this
year, describing a design by which general protected subsystems
may be implemented using a domain scheme. A protected subsystem
is a collection of programs and data with the property that the
data may be accessed only by the programs of the subsystem, and
that the programs may be entered only at designated entry points,
The general domain model improves on the earlier ring model in
that it does not constrain protected systems to be hierarchically
arranged when more than one is used in a single computation.

COMPUTER SYSTEMS RESEARCH

Schroeder's thesis goes into details of both a processor archi-
tecture and also a file system design which support protected
subsystems; both are relatively small (though intricate) de-
partures from typical current-day system designs, and thus
appear that they would be quite practical to implement. The
thesis is available as Project MAC TR-104.

A second doctor's thesis in the area of protection, by
Leo Rotenberg, is in progress. Rotenberqg is exploring the
consequences of attaching restrictions to information in such
a way that even after it is released to a program, the restric-
tions continue to operate. He has also developed a very inter-
esting method of controlling who may change access specifications
in a computer system. Basically, he permits a hierarchical
control, but with constraining protocols. With Rotenberqg's
scheme, for example, one could arrange that a person's manager
could have access to his personal files, but only after obtaining
the agreement of another, higher~level manager. This example
is only one of many possibilities. This thesis will be available
as a Project MAC Technical Report when it is completed.

In a related activity, Richard Bratt has completed a
bachelor's thesis which involves devising system support sofi-
ware which allows easy construction of user-provided subsystems
in the protection-ring emnvironment of Multics. Although
protection rings are provided by the hardware of the 6180, and
two rings are used by the Multics supervisor to protect itself,
user applications of protection rings have so far been limited
to special cases, since the file system provides no way of
cataloguing protected subsystems. Bratt's thesis is concerned
with appropriate cataloguing and user interface facilities,

As Honeywell transferred Multics from the 645 to the 6180
computer, the software which simulated rings of protection was
dropped out in favor of the 6180 hardware support. Although
the processor time to switch rings has dropped dramatically
(from 3 milliseconds down to 15 microseconds) the performance
improvement so far achieved is modest, since with simulated ring
software, ring crossings had been minimized in frequency. The
primary gain remains to be realized, as redesian of the central
core of the system can now be carried out without the need for
minimizing ring-crossings, thereby leading to probable simplifi-
cation of the central core.

A detailed paper summarizing the design of the Multics
information protection system was written by Prof. J. Saltzer.
This paper has been submitted to the Fourth ACM Conference on
Operating Systems Principles to be held in Yorktown, N.Y., in
October, 1973, and it will also be made part of the introduction
of the Multics Programmer's Manual.

Work on a new activity has begun: the redesign of the
central core of the Multics system (taking advantage of the
hardware rings as well as new insight) to produce a potentially
auditable version of the parts of the system which affect
security. This new activity is a fairly ambitious one, probably
requiring about three years, and work this year has been confined
to studying various aspects of system organization which can

-9

COMPUTER SYSTEMS RESEARCH

potentially be made more methodical, and therefore simpler, and
thus smaller, as needed for auditability. Some of the areas
currently being studied include:

Design (and propagation of the design thrcugh the central
core of the system) of a more uniform approach to
ccordination of parallel processes. The basic strategy
change is to allow several processes to operate in the
same address space. This strategy change will allow, for
c.cample, the efficient handling of small network transac-
tions on a scheduled basis rather than an interrupt basis.
Many other activites which currently require elaborate
coordination strategies (e.g., stopping a process when the
user presses his attention key) can similarly be simplified
if this change is made. Richard Feiertag is developing
this topic.

Identification of the implementation consequences of
using a single, system-wide address space with universal
segment identifiers, in contrast with the present Multics
scheme which uses a separate address space for each pro-
cess. A system-wide address space would apparently
eliminate large sections of the present supervisor which
maintain maps of the individual address spaces; the pur-
pose of this study is to understand just how much simpli-
fication could result. Although a revised hardware
architecture would be necessary to exploit this simplifi-
cation completely, even without revised hardware it may
be possible to modularize and separate those parts of the
system concerned with segment number mapping. Victor Voydock
is developing this topic.

A doctor's thesis, by David Clark, is exploring a simple
but complete I/0 architecture which in hardware provides
complete separation of independent users, so that the
operating system need not include any of the ‘usual, very
complex, 1/0 strategy and interrupt facilities -- they may
all operate in the protection environment of the user of
the I/0 device. This scheme, if implemented, would again
provide a substantial reduction in the size and complexity
of the central core of an operating system.

As can be seen, all three of the above activities are
directed toward simplifying the system so as to make the re-
maining parts, which implement the security kernel, susceptible
to methodical auditing. One final activity in this area has
been an attempt to carry out an initial audit of the user/
supervisor interface, to see both how many errors would be found
and also to learn about how auditing can be made easier. The
general topic of making a system auditable relates closely with
several othexr research and development projects on certification
of operating systems currently underway at other sites, and
contacts have been set up with these other sites so that work
may be coordinated.

=10~

COMPUTER SYSTEMS RESEARCH

E. MISCELLANEQUS ACTIVITIES

Several other activities have been carried out by CSR
division members, sometimes in support of other groups with
which joint projects are underway.

In a joint project with the Automatic Programming Division,
and led by David Reed, a Multics LISP interpreter/compiler
system which is completely compatible with the LISP system on
the Project MAC PDP-10's was developed. The Multics LISP
system was proven operational by the transfer of the Project
MAC Symbolic Manipulator (MACSYMA), via the ARPANET, to
Multics, followed by its complete and currect operation. A new
LISP manual, describing the language aow used on boih the PDP-10's
and Multics was written by David Moon and Alex Sunguroff.

Project MAC, in a joint venture with the M.I.T. Information
Processing Center, has developed a specification for a large
(8 million words) primary memory system to be attached to the
M.I.T. 6180 (Multics) computer. Rapidly developing technoloqgy
in Large Scale Integrated MOS circuitry makes such a memory
economically practical, and research in Automatic Programming
will soon require availability of such a large memory system.

The area of Multics documentation has been the last to be
transferred to Honeywell. As a result, the Multics Programmers’'
Manual, through revision 14, was published by Project MAC,
although future revisions are now expected tc be handled by
Honeywell, As part of revision 12, two new chapters of intro-
duction to the console language and to the programming environ-
ment were written. The chapters provide a liberal collection of
examples, and greatly ease the problem of a beginner trying to
learn the system.

Coordination of planning for the Project MAC terminal system
has been carvied out with the help of Kenneth Pogran who has
also coordinated the installation of data communication cables
between the Project MAC building and the Information Processing
Center building. The Electronics Systems Laboratory of M.I.T.
has agreed to help develop a detailed implementation proposal
and a prototype terminal.

-11-

COMPUTER SYSTEMS RESEARCH

PUBLICATIONS

Clark, D., "A Demonstration of the Multics System,"
Videotape recording, M.I.T. Center for Advanced
Engineering Studies.

Multics Programmers' Manual, Part I, (Introduction),
Revision 12, November 30, 1972.

Multics Programmers' Manual, Part II, (Reference Guide),
Revigsion 14, April 30, 1973,

Multics Programmers' Manual, Part III, (Subsysatem
Writer's Guide), Revision 1, May 31, 1973.

Schroeder, M.D., "Cooperation of Mutually Suspicious
Subsystems in a Computer Utility," Project MAC
Technical Report TR-104.

Sekino, Akira, "Performance Evaluation of Multiprogrammed

Time-Shared Computer Systems,"” Project MAC Technical
Report TR-1032

=12~

PROGRAMMING TECHNOLOGY

Academic Staff

Prof. J. J. Donovan Prof. S. E. Madnick
Prof. J. C. R, Licklider Prof. N. P. Neqgroponte
DSR Staff

A. K. Bhushan M. A. Cohen s, G. Morton

E. H. Black S. W. Galley L. G. Pantalone
M. F. Brescia J. F. Haverty s. G. Peltan

R. D. Bressler P, D. Lebling C. L. Reeve

M. S. Broos J. C. Michener A. Vezza

A. L. Brown

Graduate Students

P. M. Allaman P. W. Hughett . F. Okrent

s. E. Cutler J. R. Johnson M. S. seriff

B. K. Daniels D. Koenig R. A. Stern

J. D. DeTreville S. Kruger J. R. Taggart
G. J. Farrell Ww. J. Long R. W. Weissberg
R. M. Fox C. P. Mah P. Yelton

L. I. Goodman J. A, Melber

Undergraduate Students

H. R. Brodie R. G. Curley J. H. Harris
A. Y. Chan R. A. Guida Ww. F. Hui
Cc. C. Conklin L. M. Gutentag C. A. Kessel

~-13-

F.

McGath
Petolino
Prakken
Rubin

Ryan

Hicks

Hill

Undogg;aduate Students (cont.)

Support Staff

14~

RQ

A. Schweinhart

Swift

. D. Sybalsky

E. Wolfe

F. Nangle
B, Pitkin

PROGRAMMING TECHNOLOGY

A. IWTRODUCTION

The main goals of the research and development program of
the Programming Technology Division are computer facilitation
¢f human programming and automatic programming. The approach
to those goa™ - involves interactive programming systems,
computer grapnics, and computer networks. Almost all the work
to be reported has been done with a computer system called the
"Dynamic Modeling System®. 1Its hardware base is a Digital
Equipment Corporation PDP=-10 System computer with an Evans and
Sutherland LDS-1 graphics subsystem. The operating system is
ITS, developed Ly members of the M.I.T. Artificial
Intelligence Laboratory. The computer, grapnics subsystem,
and operating system constitute the foundations for, rather
than the focus of, the rescarch and development program, and
we refer to previous annual reports for descriptions of them.
Tne work of the past year has been focused on:

1. Furtner development of the Dynamic Modeling System
(DMS) as a software laboratory for research on
programming.

2. Computer-aided programming.

3. Computer networks.

4. Automatic programming.

B. THE DYNAMIC MODELING SYSTEM AS A SOFTWARE LABORATORY

The Dynamic Modeling System was conceived of four years
ago as a hardware-software system to facilitate the
preparation, testing, modification, operation, and
understanding of computer-program models. During the pariod
of its development, the concept has broadened to include other
kinds of programs than models, but the change in the purpose
and nature of the system attributable to the broadening has
not been great., The system is intended to facilitate one's
movement -- and his understanding of his movement -- from an
initial and perhaps nebulous conception of a problem to a
sharp and definite formulation of a sclution == the
formulation being a computer program, the execution of which
solves the problem.

The basic idea of computer facilitation of programming,
and of problem solving through programming, is a meld of
several parts:

l. On~-line interaction between programmer and system
2. Graphic as well as alphanumeric display
3. On=line library of tested procedures and data

4. High-level language with great expressive power

5. Efficient utilities

-15-

PROGRAMMING TECHNOLOGY

6. On-line documentation

7. Software capable of "understanding" software
sufficiently well to contribute effectively
to retrieval, testing, updating, and learning

An ideal programming and problem-solving system is
envisioned as an integrated realization of those component
ideas that presents its capabilities to users through a
consistent, user-oriented language and that actively
facilitates tne users' mastery of its capabilities.

At the present time, all the listed components are well
developed in the Dynamic ilodeling System and contriute
strongly to the effectiveness of the system as a medium for
programming and problem solving. In our cstimate, the system
is among the best anywhere in respect of items 1, 2, 4, 5, and
7, is unique in terms of 3, and is well on the way to being
unique in terms of 6. The Dynamic Modeling System is still
weak, liowever, despite significant improvements during the
past year, in terms of integration, consistency, and ease of
mastery by people who are ..ot experienced programmers. The
shortcomings in tiiose areas are due mainly to the fact tuat
tae Dynamic Modeling System was built on a base consisting of
an operating system (ITS) and several basic utilities (such as
the text editor TECO, the debugging aid DDT, and the assembler
MILAS) developed earlier within a value structure emphasizing
power and sophistication as opposed to system coherence and
ease of mastery. We have sougnt to construct a conerent
superstructure on that base, but we have not entirely overcome
a continuing dependence upon the rather diverse utilities.

Tne value of the Dynamic Modeling System as a software
laboratory stems in large part from the LISP-like language
AUDDLL, from tiae coherent programming system CALICO, and from
the information retrieval system IRS. MUDDLL and CALICO have
been greatly improved this past year, and a bridge between
them, which nas the effect of bringing all the capabilities of
each within the reacih of the other, has been brought into
operation. The programs of IPS were complete at the end of
the year, but IRS was operating with an incomplete data base.
ilevertieless, it was evident that the long-awaited time was at
hand when information about all the software in tic system
would bc available through content-sensitive (as well as name-
dependent) mcans, not only to users but to programs.

Underlying the development and use of the Dynamic
Modcling System is a concept of programming in waich there is
a blending of the essentially *top~-down" approach that seems
to be basic to what is now called “structurcd programming” and
of the "bottom-up" approach that is necessarily associated, at
lecast to some degree, witu usc of a library of prepared
procedure ana/or data modules. In tae DMS concept, tue user=
programmer should be able to put togelacr an operable program
or system of programs in a suort time. Le snould then be aple
to test it, to explore anu analyze its beaavior and its

-16-

PROGRAMMING TECHNOLOGY

results, and to modify it -~ to proceed througin those pilases
iteratively or recursively -~ with facility. The initial
phase should be carried out with the aid of a high-level
programming language and also with recoursc to modules,
already prepared and tested, tnat handle basic information-
processing tasks in a reasonably efficient way =-- with as much
efficiency as is compatible witi tiae moderate degrec of
generality of purpose that is essential to tiic success of a
modular library. In later phas¢s, when tine gencral siructure
of the program or system has been defined and the
"bottlenecks" .ave been located, tae programmcxr may substitute
special=-purpose modules for some of the general purpose
modules drawn from the library. If he does, and if they are
nct hopelessly ad hoc, he is expected, in the DMS concept, to
document them carefully and submit them to the library for
subsequent use.

An important part of our work the last two years (and
currently) has been (and is) an implementation and test of the
concept just outlined. Our experience to date convinces us
that the implemented concept is sound and effective and that
it is more realistic than progrumming concepts that tacitiy
assume that every programming task is begun with nothing to
build on, from, or out of.

For purposes of explication, let us asswae that
programmer-user ABC wishes to begin work in tie DMS in MUDDLE,
but in such a way as to have available the resources of
CALICO., The union of MUDDLE and CALICO is cailed “YDRA"*
(abbreviated "Y"), and MUDDLE within ¥YDRA is called "YM". ADC
finds a free console and types “"AZ LOG ABCJ YMQ" ~-- where "A"
means "lLiold down the CONTROL KEY while you press the key next
indicatcd® and "Q" denotes a carriage return. He then works
in MUDDLE in just the way he would work in an independent
AU.MUDDLE (in the environment MU, to be explained) except that
.e can define MUDDLE functions that are actually indirect
calls to CALICO subroutines -- of which there are more than
2,000, replete with on-line documentation, in the CALICO
librarv,

To define tne MUDDLE function INVERT.MAWRIX to be the
CALICO subroutine IiiVERT, the programmer simply types to ¥YM:

<DEF,.CAL IIIVERT.MATRIX (MA) INVERT>

Thereafter, he can use I{VERT.MATRIX in his MUDDLE programming
just as though he had defined it explicitly in MUDDLE., (Scon
it will be unnecessary for the user to create the DLF.CAL link
to CALICO. If there is not already a MUDDLE function by the
same name, he will be able to refer to any CALICO function by
its CALICO name or by a predefined synonym.)

YDRA can be entered as "YC" instead of "YM", whereupon
the environment is CALICO backed up by MUDDLL instead of
MUDDLE backed up by CALICO, At any time in YM the programmer
can switch to YC by applying the MUDDLE function YC, and at
any time in YC he can switch to Y1 by calling the CALICO

-17-

PROGRAMMING TECHNOLOGY

subroutine Y:i. But let us focus on YM for tue present and
give a brief description of MUDDLE.

1. MUDDLE

MUDDLE witih the MU environment is simply MUDDLE with a
set of MUDDLE functions and files that provide several basic
conveniences, the most important of which is dynamic loading
of MUDDLLE functions and global data from a library. This
library (MU.LB), which coneists of a personal part and a
public part, is physically but not conceptually distinct from
the CALICO library. At present, MU.LB contains a few more
than 1,000 functions. It is growing rapidly. With dynamic
loading, the MUDDLE programmer or program can call or use any
0.LB function or global datum simply by referring -- inside
angle brackets -- to its name or the name of a function that
refers to it. Thus he has an immediately accessible
vocabulary about as large as that of Basic English. Adding to
this the DEP.CAL facility mentioned earlier, which gives him
fairly ready access** to the more than 2,000 CALICO
subroutines, one arrives at a "functional" vocabulary that
Lbegins to approach what we think it will take to turn 75
percent of a typical programming task into the specification
of top-level flow control and the preparation of calling
sequences.

This is not the place, of course, to offer a detailed
presentation of HUDDLE. Let it suffice to give a very brief
description of the language and the status of its
implementation and refer to two documents:

MUDDLE was designed by LISP devotees (Sussman, Hewitt --
of the M.1.T. Artificial Intelligence Laboratcry -- and Reeve
-~ of the Programming Technology Division of Project MAC) to
provide a more readable syntax, more data types, readier
extensibility, a better base for graphics and networking, and
several other features desirable in the implementation of
PLANNER-1ike languages. The implementation of MUDDLE has
been, for more than a year, in the hands of Reeve, Daniels,
and Brodie. During the past year, the evaluator, the input-
output facilities, the interrupt-handling section, and the
declaration section of the MUDDLE interpreter have been
revritten and greatly improved. In addition, considerable
progress has been made in the development of a compiler
(Reeve, Daniels, Pfister). :

TPaying our respects to the HYDRA operating-system project at
Carnegie-Mellon University, which may have a prior claim to
‘the name, we are changing the name of our HYDRA to “YDRA®.
The allusion to multiple heads remains the same.

*2It may be worthwiile to DEF.CAL the whole CALICO library
into MU.LB. That would eliminate the definitional step and
make the subroutines almost as immediately accessible to YM as
the MU.LB function.

PROGRAMMING TECHNOLOGY

The prescnt MUDDLE compiler handles all but two of tie
things that can legally arise, and (together with
declarations, which are optional insofar as operability is
concerned but essential tc efficiency) it yields functiors
that run from 5 to a hundred times as fast as their
interpreted counterparts. There is, fundamentally, an inverse
relation between "expressive power" (which implies that many
decisions are left to be made by the interpreter) and the
“running speed" of a language/implementation, MUDDLE has
great expressive power, and interpreted MUDDLE is quite slow.
The game is to have or put or leave as much expressive power
as possible in the language -- and then provide a declaration
facility with which, after everything has been tested and
pruven, the programmer can specialize the program with respect
to particular types of data and thereby make it possible for a
compiler to generate efficient (though not as diversely
applicable) code. The MUDDLE compiler effort is moving in
that direction. It still has a long way to go.

MUDDLE is described in A MUDDLE Primer? by Pfister [32),
and the built-in operators of MUDDLE are Iisted in A MULDLE
Micro-Manual by Daniels [5].

2. caLico

CALICO* is an environment for the kind of programming in
which the efficiency of the resulting code is a major
consideration or in which it is advantageous to be in direct
contact with a subsystem-oriented coinmand interpreter or with
a large library of tested subrcutines. CALICO is almost
consistent with MUDDLE in respect of basic (primitive) data
types (Broos, Haverty, Lebling) (1, 6, 8, 9, 10, 14, 20] -=-
about as consistent as it is possikle to be while both
software systems are growing. In respect of programming
language, however, CALICO is quite different from MUDDLE:
whereas MUDDLE is a single-language system, CALICO is an
enviromment within which several different languages may be
employed.

The assembly language of CALICO is MIDAS reinforced by a
set of conventions called "Convention II" [2, 12, 13, 15-2s,
28, 29, 34-36, 38] and a collection of special MIDAS macros
and subroutines. The conventions define and the special
macvos implement five types of subroutines together with
corresponding declarations and calling-and-returning sequences
(33, 37]). The types range from very simple and very fast to
quite complex and sophisticated but correspondingly less
lightning-like. Subroutines of all out the simplest type are
dynamically loaded if they are not already in main memory when
called. The conventions also define, and the special
subroutines implement,

¥*The acronym "CALICO" is derived from "CAll-and-return
mediator", Llbrary®, and "COmmand interpreter®”.

-19-

PROGRAMMING TECHNOLOGY

tue basic data types and tieir access methods. Thus, as used
in CALICO, .!IDAS verges on being a high=level language. Some
of tiie people who use it regularly arque that it provides most
of tue advantages of a high=-level language witihout imposing
constraints in tie sometimes essential area of efficient
cading.

As a result of the diligent efforts of Okrent and
Sybalsky, CALICO offers a limited version of PL/1, Tne PL/1
subset compiler permits (but of course does not require) the
intermingling of PL/1 and assembly language statements. It is
a pre-processor which produces MIDAS output, wiich is then
assembled into machine code. The PL/1 procedures are CALICO
subroutines and can call and be called by otlher CLLICO
subroutines.

At a still higher level in the scale of languages is
Lebling and Haverty's CHILL -- "Calico's HIgh-Level Language®,
It is quite similar to MUDDLE in many ways but is somewhat
simpler and more directly associated with tae subroutines of
the CALICO library. Indeed, tne results of C.ILL programming
(just as of convention-governed MIDAS programming and CALICO
PL/1 programming) are regular CALICO subroutines, In some
task contexts, the choice between CHILL and MUDDLE is a matter
of personal taste or ego involvement. In otlier task contexts,
CHILL's advantage of rapid access to the CALICO library orx
MUDDLE's advantage of being more fully developcd may dominate.

An important aspect of CALICO is its command interpreter
(Seriff). It is of the class of command interpreters that
accept and complete an incomplete command term if the
characters thus far received match one and only one of the
strings in the command set. CALICO's cormand interpreter is
unusual, wowever, in that it can operate with compound command
terms and provides completion within each component.

Moreover, the command set is controllable by the programmer
and his programs; the commands of various subsystems can be
introduced into the command search path or removed from it
dynamically, and new subsystems can be written with calls to
the command interpreter as a regular CALICO subroutine.
Indeed, this is one of the basic ideas of the DMS: that any
software in the system should be callable as a function,
subroutine, macro, ..., or data set from anywhere else in the
system., Our earlier acknowledgement of weakness in respect of
integration referred especially to the fact that that
objective has not been reacned in respect of the operating
system and in several of the utilities not developed by the
Programming Technology Division.

A call-and-return mediator comes into play wiehever one
of the top two classes of CALICO subroutines is called and
again when it returns. The mediator serves several basic
functions, such as saving and restoring the contents of
accumulators, managing stacks, checking data types, and
parsing calling sequences., In addition, in certain modes, it
keeps .istories of program execution to facilitate dabugging,
and it offers the user-programmer a chance to intervene at the

PROGRAMMING TECHNOLOGY

time of each call and each return. Inasmuch as a fuller
account was given ir the Aanaial Report for 197:1-7., L.
foreaning may suffice for gencral description., Tie main
advances during the past year have been in data typing,
parsing of calling sequences, and stack management (Broos,
Lebling, Harris, Haverty, Long).

Althougin the CALICO library treats every item it contains
in the same way, the items range in fact from tihe .owest-level
subroutines (that call no subroutines) to complete subsystems
such as ARCHIVER, CHILL, DIRECT, DISKIO, GROWL, IRS, DM,
KDMX, NETWORK, POLYVISIOU and SDM. LEvery item in the library
is documented under Convention II and is available on-line in
both source-language and machine-~language form. Since the
collection of abstracts is now more than 6 inches thick, there
is no way to give a detailed description of the library here.
However, Table 1 lists some of the areas to which the
subroutines apply and the approximate number of subroutines in
each area. Table 2 lists the IRS categories and the
distribution by number of subroutines and percentage of the
1412 subroutine entries currently in the data base. (llote
that a subroutine may be a member of more than one category.)

-21-

PROGRAMMING TECHNOLOGY

TABLE 1.

Name
APLINE
ARCHIV

CALIB

CHILL

CHAREG

COIn
CREF

DATA

DEMONIT
DIRECT

DISKIO

CSp

FTP

GROWL

INTERRUPT
PACKAGE
IPC

IRS

Author
Haverty
Haverty
Broos
Lebling
Hui
Michener
Seriff
Seriff
Haverty
Lebling
Broos
Long
Stern

Guida
Broos

Haverty

Galley

Chan
Bhushan

Michener
Seriff
Hughett
Haverty

Broos

SUMMARY OF THE SUBSYSTEMS IN THE CALICO ENVIRONMENT

Subroutine
Description Entries
ASCII pipeline processor 25
File axchiver
15

CALICO library system (source

files) 40
CALICO high-level language

similar to MUDDLE 100
Character recognizer 50
CALICO command processor 50

Cross-referenced listing
of a file 15

Entire CALICO data-typing
system, including location
insensitizing, delayed
release of data, and

reading and printing 300
YDRA debugging aid 35
Personnel directory system 10

Disk data paging, storage
and retrieval 70

Event simulator and presentor,
graphical and on-line

debugging aid 25
ARPANET file transfer

program 25
Graphical ocutput writing 50

language
Routines for handling

software interrupt 30
Inter=-process communication 10
Information retrieval system 25

-22-

PROGRAMMING

Table 1 (continueu). Summary of tue Subsystems in
Calico Enviroament.

lHame

KERNEL

KDM

KDMX

LXTEXT

NETWRK

POLYVISION

RJE

SDM

UTILITY

Autaor
Reeve
Seriff
Michener
Long
Brodie

Haverty

Lebling

Haverty

Seriff
Bhushan
Chan

Micunener

Guida

Broos

L

Description

Kernel of the CALICO
system

Keyed data manager

TECHNOLOGY

che

Subroutine

Entrics

1090

10

Tree-structured disk storage

system

Dictionary based text
processing

ARPANET user and server
“ELNET programns

E&S picture display area
manager

ARPANET remote job entry
String data manager

General utility routines

*Contributors toc numerous to list.

-23-

25

100

100

25
15
30
500

PROGRAMMING TECHNOLOGY

TABLE 2. DISTRIBUTION BY CATEGORY OF THE 1412
SUBROUTINES CURRENTLY IN THE IRS DATA BASE.
(HOTE: SUBROUTINES MAY EXIST IN MORE THAN ONE

CATEGORY.)
CATEGORY NUMBER OF % OF
SUBROUTINES 'TOTAL
DATA MANAGEMEHNT 172 14%
DATA SET HAWDLING 129 11%
DISPLAY 203 16%
INPUT/OUTPUT 258 22%
INTERRUPT HANDLING 13 1
STAT/MATH 67 4%
NETWORK 91 6%
STRING 172 14%
UTILITY 498 433
NO CATEGORY 159 13%
3. IRS

One facet of the exploration of which the DMS is the
focus is the question of programmers’ "fluency". Can
programmers master a large set of software modules in
approximately the same way most people master a large
vocabulary of words and idioms of natural language? In each
domain, programming and natural language, the number of terms
and modules needed may be somewhere in the range from 5,000 to
50,000. In each domain every term and every module is complex
and stands in complex interrelation with many other terms and
modules. It is evident from our experience that some
programmers who participate in the development of a library of
software modules can develop a high degree of fluency in the
use of those modules. Given a program's name, such a
programmer can remember and explain what it does and how it
relates to data types and to other programs -- he can do that
for perhaps 950 out of a 1000 MUDDLE functions and probably
almost as well for CALICO subroutines. It is much more
difficult to remember the name of the module given its
function. Even with MUDDLE functions named according to a
system of naming conventions, witn which one of us has had
about a year's intensive experience, in at least half of the

-24-

PROGRAMM1NG TECHNOLOGY

instances it takes some searching to find the exact name of a
desired function.

The problem of finding modules in a software library that
satisfy specified descriptions is formally very much the same
as the problem of "intellectual access” to documents in a
book-and-journal library. The solution, also, appears to be
formally very much the same: an information retrieval system.
(But of course the parameters of on-line software retrieval
systems and conventional document retrieval systems may be
quite different.) We have explored most of the conventional
library techniques ~-- index cards (including edge-notched
cards), computer-generated lists (including inverted lists and
indexes) posted on the walls near the consoles, review articles,
human librarians, a descriptor-based on-line retrieval system,
and informal communication among "authors®. All have proven
valuable, but the only techniques that appear to meet the time
press of on-line programming are on-line, interactive retrieval
techniques.

To be on-line and interactive is necessary but not
sufficient. The attributes of completeness, automated
search, and fast response are essential., Two of the
information systems we have tried were found wanting mainly
because of gaps in the information base: an old ITS program
called "INFO" and a new, not yet completed MUDDLE function
called "?" (Licklider, McGath). The "?" subsystem of CALICO's
command interpreter and two subsystems for examining CALICO's
library documentation had the advantage of gap-free
completeness but suffered becausc one had to know the name of
what he wanted to learn about or else search by scanning. The
descriptor-based retrieval subsystem that we built at the
outset of the project was on-line and provided automatic
search via file inversion, but it suffered from slow response
because it operated in MULTICS and so, to use it, one had to
switch to the DMS NETWORK program, log into MULTICS, and start
up the retrieval subsystem. (It was not economical to stay
logge@ in all the time just to retrieve information.) These
experiences convinced us that an on~line retrieval system was
precisely what we needed, but also that it must not lack in
completeness, responsiveness, or search power.

IRS (Broos) now provides those* and other described
features in one general-purpose CALICO subsystem, and
preliminary tests suggest that it will indeed solve the
problem of finding modules pertinent to specific needs that
arise during programming. IRS is available to MUDDLE as well
as to CALICO. The IRS programs are table-structured and
table-driven and thus wholly independent of the content of the
data base to which they are connected., They can handle many
categories of infurmations programmer's name, module's name,
argument dsta types and stru-tures, resul: data types and
structures, descriptors, Dewey~Decimal-like classification,

*Except completeness, which rzfers to content.

-25-

PROGRAMMING TECHNOLOGY

and so on., They provide for multi-inversion of the data files
and for automatic updating. They respond sufficiently
rapidly, even with a large data base, that users will not be
frustrated by delay.

We are now going to convert INFO ané the MUDDLE "?*
function over to IRS and to augment the descriptor part of the
CALICO library documentation. (Descriptors have been
neglected because, heretofore, there was no good way to use
them.) Techniques for describing MUDDLE functions are being
developed in connection with automatic programming (vide
infra), and preliminary results of that work are being
incorporated into IRS. And, finally, a protocol for MUDDLE
programming is being developed that will make it difficult to
define a MUDDLE function without documenting it -- and will
deliver appropriate data directly tc IRS. Thus we hope,
during the coming year, to reach a point at which all MUDDLE
and CALICO routines and the key utility programs are carefully
described within a retrieval system that will give both human
and automatic programmers ready access to essential
information,

4. Graphics

Progress has Leen made during the past year toward
incorporation of graphic techniques into programmers’ regular
working procedures. Many of the basic software modules
necessary for picture definition, graphic display management,
and graphic input management are ready for application. An
applications program, FIGS, a program that facilitates the
creation (by sketching on a graphic input tablet) and editing
of figures to be printed on a line printer, was completed.
Another, a Tool for Interactive Graphic Emergency Room
Simulation (TIGERS, described later), is nearing completion,
And a third application program, STATS, a statistical analysis
and display package, was updated to provide an efficient
interface to ARDS and IMLAC display terminals and to the
*mouse”, the two dimensional input device available at these
terminals, Progress has been made on techniques for using
graphic displays to aid in the debugging of programs. Two
such programs, a Graphical Debugging Tool, GDT (Hughett) [11],
and Execution Simulator and Presenter, ESP (Galley) [7], are
discussed in the section on Computer-Aided Programming.

Advances in the CALICO environment's graphic capabilities
centered upon the subsystems GROWL: GRaphics Output Writing
Language (Michener); CHAREG: a CHAracter REcoGnizer for hand-
drawn characters (Hui, Michener); and Polyvision, a subsystcm
for managing display surface area and input tablet surface
area (Michener). Also, display subroutine modules and data
sets were made uniform, with respect to a user’'s view of them,
with PDP-10 CALICO subroutine modules and data sets, thus
providing a capability to dynamically load them. Special
memory storage allocation subroutines were implemented to
minimize the number of tied-down display pages required by a
process.

-26-

PROGRAMMING TECHNOLOGY

GROWL provides a capability for defining pictures in the
CALICO environment. It provides the CALICO programmer with an
integrated means for picture definition which is independent
of tie physical medium for output. It provides thec necessary
modules to allow a graphics program to usc as its output
device the LDS-1 display, the ARDS display and/or the IMLAC
display. In addition, GROWL is intended to serve as a
framework for the implementation of both the "SERVER" and
"gSER" ends of the ARPA Hetwork graphics protocol.

CHAREG provides a graphics programmer with a subsystem
for training and recognizing hand-drawn characters, drawn on a
graphic tablet surface using a stylus. It provides a facile
means for using and creating character definition dictionaries
and for inserting and deleting character definitions into the
dictionaries in an operationally natural way. It was
converted to run under the CALICO environment. In addition,
it was reorganized to purify much of its code, make it more
efficient in terms of its execution time, and make the
subroutines within the CHAREG subsystem more readily available
in the CALICO environment. CHAREG is highly modular, and has
several (8) existing encapsulations, one of which is used by
the Polyvision graphics subsystem.

The Polyvision graphics subsystem acts as a manager which
coordinates the action of multiple substantive graphic
subsystems in their use of the display and tablet input area.
The environment provided by Polyvision allows amicable sharing
of the LDS-1 display surface area by all the display
subsystems that a user may have running. At the user's finger
tips, by means of stylus input, is a mechanism for creating,
updating and deleting tasks. Polyvision also provides fer
(again under stylus control) expanding or contracting a task's
allocated display area (rectangular areas called viewports)
and the management of which task (including Polyvision) is to
receive the tablet input. Polyvision accepts input from both
the user's console and tablet. Tablet input may be in the
form of light buttons or hand-drawn characters that are to be
recognized by CHAREG before being interpreted by Polyvision or
one of the other subsystems.

By using Polyvision, the human frees himself from the
typical mode of operation imposed by a console, i.e.,, the mode
in which he interacts with one subsystem for a period of time
and then turns to another. Polyvision enables him to interact
rapidly with many subsystems switching among them merely by
moving his hand to a different part of the tablet surface,
Also, he can visually compare the displays produced by
different subsystems, or refer to one tagk's display while
interacting with another.

This past year saw the MUDDLE GRAPHICS facility (Daniels,
Black) [4] become fully operational. It provides the
priritives to define a PICTURE, A PICTURE is a MUDDLL object
whose type is PICTURE, 1t has special distinguishing
attributes. A PICTURE can be: displayed on a display device
(LDS=1, ARDS, IMLAC), erased, hit by a stylus, a sub-part of a

-27=

PROGRAMMING TECHNOLOGY

PICTURE, saved in a file, retrieved and displayed again, and
processed for plotting on a CALCOMP plotter.

What GROWL provides for the CALICO programmer, MUDDLE
GRAPHICS provides for the MUDDLE programmer., Namely, it is a
met;,0l of defining pictures and the rasic primitives to
display them on a device. A more ambitious advancement of
MUDDIE GRAPHICS i« the Display Algorithm Janguage Interpreter
(DALI), an experimental version of which has been designed and
is under development by Pfister (a member of the Eagineering
Rohotics Grouwp of Project MAC).

The intent of DALI is to provide a means of Gefinition
and creation of (dynamically) changing pictures. The purpose
of DALI is to allow the structure and dynamics of a picture to
be separate from the structure of its driving application
program. In general, such separation enhances modularity and
decreasnes the complexity of interactive graphics programs.
DLLI has, in additio:n, been found to be extremely hardware
independent.

DALI differs from previous display-orviented languages in
that it does not treat a picture as passive data, but rather
as a structure of active objects called picture modules. Each
picture module contains an interrupt-driven procedure {a
"daemon”) and as3ociated (named) inputs and outputs. Picture
modules communicate through heterarchical input/output links;
daemons are run in response to changes in input values
(contents), and may compute and propagate new changes via
their module’s outputs, Facilities exist for structuring
changes in nested groups of modules to be performed in
parallel or in sequence (Pfister).

A further graphical effort in MUDDLE was the
implementation of a set of primitives to provide a facile
means of making two-dimensional plots on IMLAC and ARDS
display terminals of equations with more than one variable
(Ryan). Basically, all the varisbles but one are treated as
parameters; convenient means are provided for changing which
variable is not a parameter, as well as changing paraneter
values. It also provides a coanvenient means for plotting data
on ARDS and IMLAC displays.

5. Hardware and ITS System Developments

The DMS PDP-]0 acquired a DM-10 Memory Map from Systems
Concepts of San Franciasco, California, and a much simpler
companion map for the Evans and Sutherland LDS-1 display. An
ITS capahle of performing swapping operations between primary
and secondary memory was obtained from the Artificial
Intelligence Laboratory. It was modified (Brescia, Cutler,
Cohen) to provide a graceful transition from non-swapping to
swapping dnmain for all DMS user level software.
Specifically, modifications were made to: the disk code
(Cuitler) -- in order to provide a more rational utilization of
the DMS disks then could otherwise be achieved; the console
handling code (Cohen, Brescia) -~ to handle DMS prograns and

~28-

PROGRAMMING TECHNOLOGY

consoles; the lletwork Control Program (Brescia) -- to provide
an operational network interface; and the display handling
section (Black) -- to set up the memory map, field page
faults, and tie down up to 20 pages of memory for the displays
in use. Finally, an effort to merqge the AI, ML, DMS systems
under one source has been undertaken by Stallman, Greenblatt,
and Knight of the Artificial Intelligence Laboratory, Jarvis
of the Mathlab Group, and Brescia and Cutler of the
Programming Technology Division. An additional 3237 of memory
(Vezza) was interfaced to the DMS bringing its total core
memory size to 256K*. An effort has been started to make the
LDS-1 consoles more easily available to Programming Tecinology
Division programmers (Black) and to provide hctter character
drawing capability (Morton, Black).

We have instituted a procedure (Brescia, Cutler, Veczza)
for backing up files on 9 track magnetic tape and have
implemented programs to carry out the procedure (Cutler). We
have also developed procedures (Brescia, Cutler, Vezza) and
programs (Cutler) for a file housekeeping system (alias Grim
File Reaper) that is run approximately o.xce a month for
backing up and deleting files which have not been referenced
recently.

6. Applications Programs

A substantive application program, Computer-Aided
Evaluation and Design of Feedback Systems, CAEDFS (Cutler)
[3], was completed this past year Another, a Tool for
Interactive Graphical Emergency Room Simulation, TIGERS
(Weissberg), is nearing completion. These two projects
provided some experimentation with the MUDDLE and the MUDDLE
GRAPHICS facilities to test their applicability to the
implementation of application programs of this type. The
experiment proved very useful, as it resulted in constructive
feedback which influenced the MUDDLE and MUDDLE GRAPHICS
implementations.

CAEDFS is a set of computer routines written in MUDDLE
that analyzes feedback ccntrol systems, designs compensation
networks, and outputs graphs of their predicted performance.
Criteria used in the analysis phase are: gain-margin, phase-
marcin, unity-gain frequency, DC desensitivity, mid-band
desensitivity, minimum phase before cross-over, step response,
and maximum peaking. CAEDFS routines have incorporated in
them knowledge and decision processes about the applicability
and design of six types of feedback control system
compensation networks -- three series type and three minor
loop feedback type. The user may specify or let CAEDFS decide
which type of compensation to use in a given situation in
order to achieve the system design goals. The design of a
compensation network is carried out using criteria, where
applicable, such as: crossover frequency,

*K = 1024.

-29-

PROGRAMMING TECHNOLOGY

phase margin, minimum phase shift, extra poles, and available
feedback gain. The predicted system performance can be output
in the form of Rode, Nyquis*, and unit Step response plots.

The measure on the applicability of MUDDLE to
applications such as this is of course the ease with which
such systems can be built and how well they operate. Let it
suffice to say that CAEDFS was designed and implemented in
leas than four months by a graduate student (Cutler, in
association with pr. J. Roberge, Professor of Electrical
Engineering) as part of his master's thesis work. Purther, it
analyzes feedback control systems and designs compensation
networks using on the order of 1 to 20 CPy seconds.

TIGERS is in operation and is nearing completion. It was
designed and implemented by Weissberg (of the Prograrming
Technology Division of Project MAC) in conjunction with Dr. R.
C. Larson, Professor of Electrical Engineering and Urban
Studies, and Dr. R, P. Mogielnicki, M.D., of the Cambridge
Hospital Department of Community Medicine.

TIGERS is a tool for designers and administrators of
hospital emergency rooms. Through graphics and interaction
with the designer, a flexible modeling environment for the
analysis of hypothetical hospital emergency rooms is created.
EFmergency room events, easily understood by people who have
little or no mathematical or computer-oriented expertise, are
presented in animated graphical form.

TIGERS allows the user to manipulate emergency room
resources such as: number of beds, nurses, doctors, x-ray
stations, etc. Also, it allows him to manipulate statiatical
parameters of the model such as: average arrival rate,
probability of a patient requiring an X~-ray, mean time at an
x-ray station, etc. It is implemented in such a way as to
provide interaction with the model in a natural and convenient
manner through the use of tablet input and displayed light
buttons,

C. COMPUTER-AIDED PROGRAMMING

Probably the greatest single computer aid to programming
is a responsive, interactive computer system with good
Programming languages, a good library, good documentation, and
good retrieval facilities. The Dynamic NModeling System, as
thus far described, is in our assessment such a system. On
that foundation, we are building an integrated array of aids
to facilitate the following aspects of programming.

1. Mministration of programming projects.

2. Communication among the members of a Programming
project.

3. Design, preliminary programming, and testing
and evaluation of preliminary programs.

-30-

PROGRAMMING TECHNOLOGY

4. Programming conveniunces
S. Bditing
6. Debugging

7. Keeping track of software modulcs and moving
them from initial operation through a series
of steps to residence in a pablic library

8. Naming (within a system of naming conventions)
9, Documentation
10. Evaluation

11. Understanding programs and modules prepared
by others

12. Maintenance of modules, programs, and
systems

13. Understanding the process of programming

An essential aspect of aid to programming is to have much of
the programming task already done and to have the results
readily available for application. The libraries described in
the preceding section provide the basic mechanism for ready
availability. To have prepared in the past software that
turns out to be useful in the present or will turn out to be
useful in the future requires, in addition, a working
philosophy relating to software generality, and that
philosophy must be regarded, also, as a programming aid.

1. Administration of Programming Projects

This area we have only recently begun to explore
systematically. We have experimented with use of a file
area, ADMIN, as an exchange medium for goal statements and
progress reports. We have a personnel information subsystem
{Guida)., A few of us have explored the facilities provided by
the Network Information Center at stanford Research Institute.
Our experiences with those items indicate that, to be fully
effective, an administrative subsystem must be consonant with
four fundamental guidelines:

1. Administrative communication must pass through
tha computer and must automatically create
the records required in administrative control.

2. All substantive work must be done within the
computer system and must automatically create
the records required in administrative evaluation.

3. Administrative information must be organized

-31-

PROGRAMMING TECHNOLOGY

for retrieval by description rath¢r than retrieval
by name,.

4. The availability of computer means must not be
allowed to induce overadminstration.

We are now planning an administrative subsystem, to be based
on the information retrieval system, IRS, that will be
(insofar as possible in an early version) responsive to the
four guidelines,

2. Communication Among the Members of a Programming Project

Although still largely face-to-face and informal,
communication among programmers has been greatly facilitated
by computerized mail, both local and via the ARPA Network, and
by announcements in system and sul-ystem heralds. To date,
our mail facilities have been limited to person-to-person and
person-to-specified-group, and local and network mail have
been separate and distinct. We have designed and are
implementing a new, integrated mail service that brings all
the desirable mail and announcement features we know of into
one consistent framework (Haverty, Bhushan, Vezza, Hart) and,
in addition, incorporates features of descriptor-based
dissemination and retrieval schemes (Broos) and of
"teleconferencing” systems (Haverty, Bhushan, Vezza, Hart).

3. Design, Preliminary Programming, and Testing and
valuation o reliminary Programs

In this area, we have explored the use of MUDDLE as a
tool for design and preliminary programming of software later
to be implemented in CALICO. 1In one project, for example, one
of us prepared a MUDDLE program to express the general idea of
what was desired. Another then expanded the idea in MUDDLE,
explored several ways of handling key problems, and then
rewrote the whole thing in CALICO to achieve the required
operational efficiency. It was obvious that this procedure
was much more effective than other procedures within our
capability would have been. We are thinking in terms of more
objective comparisons, but ocbjective comparison in the
programming field is fraught with difficulty. We are working
to develop the idea of designing a program by first modeling
it and then progressively turning the model into a full-
fledged program.,

In both MUDDLE and CALICO we have simple facilities for
analyzing the temporal performance of programs. We plan to
develop evaluation subsystems that will deal with memory and
storage space as well as with time.

4. Programming Conveniences

In several experimental MUDDLE programming environments,
we have incorporated conveniences (Parrell, Stern, Licklider,
McGath) somewha: similar to some originated by Teitelman in
the enviromment of BBN-LISP (now INTERLISP). These include

-32-

PROGRAMMING TECHNOLOGY

spelling correction, selective undoing of computation with a
display of recent history of computation, attaching and
checking of programmers' intent with respect to MUDDLE objects
(by means of a debugging monitor interfaced to structure and
string editors), functions for using and updating a random-
access documentation library, and display of progress of
computations at variable speed and detail.

It is so easy to define a dozen or so :imple functions in
MUDDLE that (insufficiently "structured®) programmers tend to
forget what they have defined before they get all the
components connected together. A convenience that overcomes
that problem is an interactive definer that keeps a record and
periodically files the record as well as the defined
functions. The: interactive definer (Licklider) makes it easy
to revise definitions as they are being formulated and permits
the programmer to defer specification of tne argument list
until after he has completed the body of the function. The
definer demands documentation inform.tion as soon as each new
function has been defined.

Another MUDDLE "convenience" -- one that would not be
required in a fully inteqrated software system -- is a set of
functions that causes certain utilities to perform specialized
chores for MUDDLE programs, For example, the function TE
(Long) sends two files to TECO, one containing commands and
the other an object, and TECO automatically performs the
commands with respect to the object and sends the modified
object back to MUDDLE, which automatically resumes processing,
Such functions simulate integration by “papering over®, but
they do provide a great increment in convenience over
independent utilities.

in CALICO, most of the programing conveniences are
incorporated into the system of MIDAS macros, the command
interpreter, the call-and-return mediator, and the high-level
language CHILL. 1In addition to those, there are TLCO macros
to facilitate programming and documenting in adherence to
Convention II (Michener).

5. Editing

In the DMS now are text and object editors suitable for
all the available languages. TECO and IMEDIT remain the main
text editors but a new text editor (Farrell) (31] is available
in MUDDLE. There bas been some progress toward the
implementation of a text editor in CALICO (Broos). MEDDLE,
the main object (i.e., structure-oriented) editor for MUDDLE
bes been greatly improved this past year (Pfister, Farrell),
and it has been adapted more or less satisfactorily for use
with CHILL (Lebling). 1In addition, two sets of editing
primitives have been developed in MUDDLE (pfister, Licklider),
and it is now convenient to incorporate editing operations
into application programs. Also in MUDDLE is a special editor
for editing collections or families of MUDDLE functions
(Licklider). It makes "global™ changes automatically to all
the functions and implements "local™ changes function-by-

-33=

PROGRAMMING TECHNOLOGY

function in response to directions from the keyboard or a
file.

6. Debugging

During the past year, considerable progress has been made
in computer-aided debugging. There have been two main
focuses: (1) basic system organization to facilitate the
detiction and elimination of bugs, and (2) specific debugging
too s.

Under the heading of basic system organization fall
several developments in MUDDLE and in CALICO. The declaration
subsystem of MUDDLE now performs type checking during
interpretation (Reeve) and the error subsystem reports type
inconsistencies, Functions are available for examining the
MUDDLE stack in ways pertinent to certain error reports. The
multi-process feature of MUDL'LE has been exploited to enable
one process to "single-step” another (Farrell, Daniels)., 1In
CALICO, tihe type checking provided by CHILL (Lebling, Haverty)
serves to catch errors in CALICO subroutines as well as in
CHILL functions.

Under the heading of specific debugging tools, the past
year has seen major advances in the subsystenms called “ESP"
(Galley) and "GDT" (Hughett) {11) and the completion of tools
for analysis of module interconnectivity (Woltfe) ({7, 27},
cross references (Seriff), detection of bugs by invoking tests
during execution (Stern), and detection of parenthesis
mismatches (Daniels). ESP (Execution Simulator and Presenter)
has been rewritten in CALICO and is now a wholly regqular
subsystem (Galley). GDT (Graphical Debugging Tool) has been
endowed with the capability of recording execution history
over 10,000 or so instruction cycles and developing "influence
nets® within the recorded span (Hughett) [11]. An influence
net shows, for a selected computational event, all the
preceding events that could have influenced it and all the
succeeding events that it could have influenced.

In both MUDDLE and CALICO, facilities have been developed
for analyzing and presenting the interdependencies of modules
in complex programs. A MUDDLE function makes summaries of
MUDDLE functions, listing arguments, functions called, atoms
with global values other than functions, atoms with local
values, and atoms with no values (Licklider). Other functions
are being prepared to check consistency within families of
summarized functions. In CALICO, the library-maintenance and
information-retrieval systems jointly analyze
interdependencies and check consistency (Broos). In large
program systems, such static debugging procedures appear to be
essential because dynamic debugging may proceed for hours
without encountering a bug that is very much present and
potentially disruptive.

-34-

PROGRAMMING TECHNOLOGY

7. Keeping Track of Software Modules and Moving them from
Iniglag Operation Through a Series ol Steps
%o Residence in a Public Library

This aspect of programming is handled in CALICO by the
integrated subsystem of library maintenance programs developed
during the past year (Broos, laverty, Lebling, Michener). The
library subsystem provides an entry repository for new
programs and takes each program through steps of testing,
document checking, and admission to the public library. A
complex array of pointers defines, at every moment, the
current configuration of the library and its documentation. A
subset of the latter is the ABSTRACT BOOK, whicnh has been
published in an edition of 50 copies so that each DLMS
programmer can have one at his elbow. The library-maintenance
system automatically keeps track of new accessions and
periodically prints updates for the ABSTRACT BOOK. The CALICO
library-maintenance and information-retrieval systems are
reasonably efficient and capable of dealing witih data bases of
significant size., The thought has occured to us that it might
provide a good base for coping witi the software problems of a
sector of a computer network,

The provisions for keeping track of software in MUDDLE
are experimental and not as efficiently developed as those of
CALICO, but they connect more closely with the ongoing work of
the individual programmer. The arrangements for following the
programmers work are part of a MUDDLE programming environment
called "MU" (Gray, Licklider, McGath, Yap).

MU provides the programmer with a special set of
functions and files (Licklider, McGath) and a dynamic loader
(pfister) that facilitate his work, The part of this
apparatus that deals with keeping track of software includes
the interactive function definer mentioned earlier. Tne
defined functions and their documentation go to separate
"step-1" files as soon as definition is completed. There are
three higher levels of files called step-2, step~3 and step-4.
Each level gives an indication of the state of the exactness
of the function's documentation and the vigor with which the
function has been tested.

There is a protocol for promoting functions from one
level to another. In the final step in the move, functions
and data sets (far more of the former than of the latter) that
promise to be generally useful are moved into tne MU
environment's public library (step-4 files), and at that time
the documentation pertaining to them is reviewed and, if
necessary, a final update is made.

Each year about a dozen undergraduate students carry out
programming projects in a Project Laboratory agssociated with
the DMS. This year we hope to "debug" the software control
system just discussed by using it in the Project Laboratory.

-35—

PROGRAMMING TECHNOLOGY

8, Haming

Systematic procedures for naming the objects of a complex
software system may be almost as important as systematic
procedures for describing objects -- or may not be; the
question is open. We have experimented with several
conventions for naming files (Martin) (29]) and functions
(Licklider). lone has achieved unanimous acceptance, even
within our compact group, probably because naming ofispring is
viewed as an individual or family right and an area reserved
for idiosyncratic expression., Nevertheless, it is obvious
that sharing of software resources would be fostered by some
nonzero degree of agreement about how to name objects, and we
are still exploring the matter.

A basic problem in software nomination is whether a name
should reflect meaning in a substantive application area
(e.g., COST.OF.BEEF) capable of providing strong semantic
support to a person who is trying to understand a program, or
whether the name should suggest the data type or some other
syntactic aspect that would still have significance if the
same software object were employed in a different application
area (e.g., INTEGER.l or DOLLARS .AND.CENTS.2). Our strong
interest in the sharing of resources and in the software
library concept biases us in the direction of syntax-oriented
naming. Most of the names of atoms in the libraries of the MU
environment are syntactic names such as "§" (*Structure"),
"eLV" ("List of Vectors®), and "eV/V4I.V4R" ("Vector
consisting of two Vectors, the first consisting of 4 Integers
and the second of 4 Real numbers®). (This scheme is
elucidated a bit further in the section on Automatic
Programming.) In some instances, it is advantageous to
incorporate some amount of substantive meaning into a name, to
make the name somewhat semantic as well as syntactic, but in
the scheme being discussed, the semantic component is always
restricted to the field of information processing and not
allowed to extend to truly substantive application areas. PFor
example, “®AV/VIIeINDEX.*VNI+DOCUMENT.NAME® is a possible name
for a vector of two vectors of equal length, the first
consisting of integers representing indexes and the second of
strings representing document names. However, in the rotation
scheme used in MU, there is a long list of abbreviations, and
the example would actually be "SAV/VNTeIX.eVNTeDM.NA". Once
mentioned in a function, the vector thus identified could be
referred to as just "A", which is in a sense the name of its
name. MUDDLE itself does not automatically recognize name
equivalences of that kind, but it of course permits two or
more atoms to identify the same object, and concurrent use of
full and abbreviated names is readily achieved in special
MUDDLE enviromments,

It is easy, as the foregoing examples suggest, to
contrive a scheme so complicated that no one but the contriver
will ever learn it. We are exploring several possible
solutions to that problem. We have functions that analyze
compound names into their components and routines that
recognize compound names when a sufficient number of their

-36-

PROGRAMMING TECHNOLOGY

components are specified in any order. The completion scheme
used in the CALICO command interpreter is of course
applicable. In MU there is a computerized flash-card learning
aid that makes the mastery of abbreviation conventions rather
painless, even enjoyable, And there are namc-translation
functions that replace abbreviated name componcnts by their
expansions or vice versa. Indeed, for simple names, there is
a print mode that displays sucih names in full even though they
are represented in memory as abbreviations -~ and a print mode
that does the conversc.

With the facilities mentioned, we are beginning to
explore the feasibility of a system in which all the
frequently used software concepts have convention-governed
names and computer-processible definitions. The names will
serve as declarations, and both programmers and programs will
"know" or be able to figure out what they can legally do to
and what can legally be done by any named object. This of
course is just one approach., Another is to rely on separate
declarations and let objects be named willy-nilly. The
essential issue is not how to represent the distinctions; it
is that the distinctions be made explicitly and consistently
in a computer-comprehensible way and that thcy be preserved
throughout a whole system of software.

9., Documentation

In the early stages of the projec’ , members of the group
viewed the preparation of documentatior with great disdain.
It was much mor~ enjoyable and reinforcing to write and debug
programs than to document them because documentation did not
play an essential role in the system building until the system
grew beyond the scope of unaided memory and informal
communication., Sometime in the second year, documentation
aids began to be developed, the painfulness of adhering to
documentation conventions diminished, and the CALICO library
began to grow and almost automatically to achieve a reasonable
degree of consistency. The documentation aids constructed at
that time are mainly TECO macros. They will perhaps
eventually be replaced by an integrated CALICO documentation
subsystem, but the macros are sufficiently effective that all
that was urgently needed was organization and documentation of
them. That was accomplished this last year (Michener).

In MUDDLE, the situation is now about like it was in
CALICO twn years ago except that, in MUDDLE, documentation is
inhibited by the fact that it is usually easier to write and
debug a function than to document it. It may turn out to be
true that documentation does in fact have a smaller role to
play in MUDDIE than in CALICO, but there is no question that
documentation (especially computer-comprehensible
documentation) is central to the concepts of software
laboratory, software production facility, and automatic
programming. We have therefore been exploring computer-aided
documentation in MUDDLE. The exploration relates to the
definer function and the naming conventions mentioned earlier
and to a discussion in the section on Automatic Programming of

-37-

PROGRAMMING TECHNOLOGY

how to specify what functions do. Inasmuch as the exploration
is in an early phase, those mentions may suffice for the
present.

10. Evaluation (Assessment)

Although computer aids to evaluation of software is an
important topic, we have just recently started to come to
grips with one small part of it. A basic measure of the value
of a software object is the number of times it is used. The
library-maintenance system provides for each subroutine a list
of all the subroutines that call that subroutine, and the
system derives from the set of such lists a list of pairs that
shows for each subroutine of the library how many callers it
has (Broos). That list of pairs is itself a fairly good
evaluation of the "callees™. In addition, we have explored
the feasibility of tallying every call to every mediated
subroutine (Vezza), and we have a preliminary plan for a
timing subsystem that will automatically compare various
versions of the same MUDDLE function (Licklider).

11. Understanding Programs and Modules Prepared by Others

Documentation, conventions, and the inherent clarity of
programming languages are of course basic to this topic, but
the topic is open to study and facilitation in its own right.
We have made just one beginning toward such study: an
experiment in which several programmers were asked to debug
and report on their debugging of a few briefly described
programs in which bugs were planted (Schweinhart). There
appear to be very great differences, even among programmers
who spend several hours a day at the console, in understanding
such programs well enough to debug them in any other way than
by rewriting them de novo. For some, evidently, it is much
easier to devise an algorithm than to figure out why a
slightly wrong algorithm doesn't work. Pechaps the algorithm
does not have to be wrong at all: it may be that some people
are simply very much better at software synthesis than at
software analysis,

ESP and GDT, mentioned earlier as debugging tools, are
also effective aids in understanding other people's programs.
The user-intervention feature of CALICO'S call-and-return
mediator is also an effective aid: it permits one to examine
the progress of a computation in steps corresponding to call-
to-call, call-to-return, return-to-call, and return-to-return
intervals, and so to step through a more complex program than
can be examined instruction-by-instruction. In MUDDLE, we now
have two functions (Farrell, Petolino) that display evaluation
step by step. Brevity demands that an example be
unrealistically simple:

Input: <SET X <+ 1 <* 2 3>>>¢
Output: <SET X <+ 1 <* 2 3>>>

<SET X <+ 1 6>
<SET X 7>
7

-38~

PROGRAMMING TECHNOLOGY

12. Maintenance of Modules, Programs, and Systems

This area is the focus of the CALICO library-maintenance
programs (Broos) already mentioned several times. In MUDDLL,
the pertinent work coucerns testing MUDDLF functions and
recycling defective library functions through the stepwise
procedure described earlier (Licklider, M=Gath). Tne main
goal in this area is a system in which there is an explicit
representation of all the software ramifications and
interactions. In such a system, a program will be able to
know that changing module X will or may upset modules Y and Z,
and in precisely what way =-- and it will in some cas¢s even be
able to make compenscting adjustments to Y and 2Z {and then
determine the ramifi:ations of those adjustments). This is a
broad and deep subject, but valuable practical results have
already been obtained by simply automating the bookkeeping of
which modules refer to which other modules (Broos, Licklider).

It is widely understood from experience that complex
software systems need to he exercised continually., Freguent
exercise seems to keep the bugs out, or at least reveal bugs,
motivate their elimination, and then reveal the bugs
introduced by the elimination. We have explored the idea of
systematically exercising software -- executing it under the
control of a program that knows what should happen and checks
that it does happen (Gray, Licklider). Systematic exercise
has revealed flaws immediately after library updates, when the
updating was still fresn in mind, that would otherwise have
gone undetected long enough to become difficult to understand.
We have some ideas about an exerciser that will not merely
conduct "canned" tests but also devise new tests on the basis
of documentation.

13. Understanding the Process of Programming

It is very clear that many programmers can program well
put that few if any can explain how they do it. To develop a
basis for automatic programming it is necessary to find out.
To that end we have made a beginning on a MUDDLE subsystem
that will create an annotated record of what programmers do
(Licklider).

In this subsystem as it now operates, a record is made of
every object the MUDDLE interpreter reads, the time at which
the interpreter finshes reading it, every object returned by
the interpreter after evaluating what was read, and the time
at which the interpreter finishes the returning. To this
record are added, in their entirety (even if not so read or
returned) the definitions and documentation items provided
through the definer and also notes prepared from time to time
by the programmer to explain his motives and intentions. The
notes and documentation are crucial to intarpretation of the
records. Every 40 console interactions, therefore, the
subsystem checks to see whether or not the programmer has
submitted tne required number/amount of notes/documentation.
If he has, he is alilowed to continue, but, if he has not, the

-39~

PROGRAMMING TECHNOLOGY

subsystem asks him to remedy the lack and cycles him back
through the request loop until he does so.

With the aid of his notes and documentation, a programmer
can recall rather well what he did, and apparently also to a
congsiderable extent why he did it, during a recent session at
the console. It is difficult for another person to figure out
exactly what happened, and more difficult for another person
to get a good idea why, but it seems likely that the scheme
can be developed into a facility for studying the process of
programming.

We are quite aware, incidentally, that there are serious
social implications in computer monitoring of human behavior,
We do not propose to have the system monitor anyone's
programming without his consent and his cooperation in
interpreting the records.

D. COMPUTER NETWORKS

The work of the Programming Technology Division in the
area of computer networks is focused on the ARPA Network., The
work has shifted during the past year from development of
software serving basic network functions to development and
exploitation of the ARPANET as a virtual extension of the
Dynamic Modeling System, as a pool of resources for use in
computer-aided programming, and as a communication medium.

Our main objectives in networking are to facilitate use of
certain remote resources to such a degree that they appear to
be integral parts of the DMS, to make a few of the subsystems
of the DMS very conveniently available to remote users, and to
advance the arts of person-to-person and program-to-program
communication. Our interests are evolving in the direction of
a software laboratory distributed among several network hosts
yet functionally integrated and coherent.

Our Network effort has centered upon the development of:
(1) effective network communication; (2) an experimental
Virtual File Management System; (3) a network interface for
MUDDLE; (4) programs for the automatic filing of data,
collected by our SURVEY program, at the Datacomputer (DC) and
the retrieval of SURVEY data; (5) a NETWORK MUDDLE; (6)
programs in CALICO and MUDDLE to facilitate use of the
ARPANET; (7) measurement functions to eviluate the performance
of DMS network programs; and (8) the ICCC Special Project
Demonstration.

Before we proceed to a discussion of these main network
efforts, three system related tasks that were completed must
be reported. At the end of the reporting period, an
experimental Server TELNET (Chan, Brescia, Bhushan) behaving
in accordance with the new TELNET protocol was operational on
DMS socket 69 (decimal). The NCP of the new model ITS
(swapping system) and our HOST-IMP hardware interface were
mutually modified (Brescia) to make them compatibla, and
additional NCP calls were installed (Brescia) so that our
sans-swapping ITS network software became operational with a

PROGRAMMING TECHNOLOGY

minimum amount of modification.

1, HNetwork Communication

We are well into the implementation of a unified
communication facility (Haverty, Bhushan, Brescia, Vezza) for
both intra- and inter-system use¢. We are providing a number
of facilitation functions, such as distribution by group name,
and deferred distribution to remote ARPANIT hosts. One
important function will be to thread together communiques
whogse content is pertinent to a particular subject matter and
provide an information retricval system to facilitate
extraction of information.

2, Virtual File Management System

A version of a Virtual File Management System (VFMS) (35)
was designed, simulated, and implemented (Seriff). The goal
of the system is to provide a mechanism whereby file directory
operations and file access operations are specified in a
uniform manner for all file systems on the ARPANET hosts that
possess a VFMS Server File Transfer Program (FTP) that
behaves according to the VFMS File Transfer Protocol.
(Currently the implementation is operational in the three ITS
environments at M.I.T.) Further, the design provides for a
virtual file directory system that allows the names of files
from any number of hosts to co-exist in a single directory.
The VFMS maps ITS commands into host specific commands. The
file directory structure of the VFMS is patterned after the
MULTICS hierarchical file directory structure.

Currently, VFMS provides a capability to list a user
directory, print a file on one's console, copy a file from one
directory to another, append a file to a file, rename a file,
create a link, delete a file, create a split file (a virtual
file composed of constituent files that retain their identity)
and create and maintain multiple copies of a file on different
machines.

3. MUDDLE Network Interface

In keeping with the DMS philosophy of integrating
programming functions, such as editing, debugging, and
networking, into the programming environments of CALICO and
MUDDLE, we have recently added network primitives to the
MUDDLE environment (Reeve, Ryan). (Network primitives and a
USER TELNET existed in CALICO prior to the beginning of this
reporting period.) Addition of the primitives provided a
basis for a USER MULTI-TELNET and USER MULTI-FTP facilities
(Scandora, Bhushan). Also based on these primitives were
three efforts described in greater detail in the next three
sections: the SURRET subsystem, the NETWORK MUDDLE
subsystem, and MUDDLE facilitation functions for the use of
subsystems at remote hosts.

The integration of networking functions into the major
subsystem programming environments is leading to the

-4~

PROGRAMMING TECHNOLOGY

implementation aof programming conveniences for using remote
resources on the ARPANET. These conveniences provide the user
with a uniform view of many diverse systems and resources, and
the presentation of that view is made in a manner that is
consistent with what the user already knows about the DMS,

The MUDDLL TELNET and PTP facilities Presently provide a
convenient mechanism for accessing resources on the ARPANET
without the need or bother of leaving the MUDDLE environment.
Also, many of the programming conveniences that exist in the
CALICO environment are appearing in MUDDLE,

4. SURVEY

The SURVEY program collects data about ARPANET host
status at 20-minute intervals., & host's status may be: host
down, HNCP not responding, initial connection aborted by
foreign host, logger not responding, logger available, or
undetermined. In addition, response time for a "request for
connection" is collected for all hosts with status "logger
available"”,

In conjunction with the SURVEY program, we have completed
the development of:

1. A service for sending SURVEY data.

2. Storage of SURVEY data at the Datacomputer
without human intervention.

3. A MUDDLE interface to retrieve from the Datacomputer
ARPANET host status data collected by the SURVEY pProgram,

A special ARPANET socket, socket 15 (decimal) at DMS,
transmits the most recently collected SURVEY data each time a
connection to the socket is established (Bhushan, Seriff).
The data are formatted for use by an automaton. Connections
are closed by DMS immediately after the data are transmitted.
We plan to provide a similar service with a format suitable
for human reading.

A cooperative project with Computer Corporation of
America to store and retrieve SURVEY data with the aid of the
Datacomputer was undertaken and completed this past year. The
purposes of the project were: to determine whether the
anticipated mass data storage of the Datacoriputer could be
made to appear to be an integral part of the DMS; to obtain
some experience and competence with the Datacomputer and the
Datalanguage; and to let us act as guinea pigs for and
friendly critics of the developing Datacomputer facility,

The project entailed the implementation of programs that
transmit SURVEY data to the Datacomputer automatically
(Bengelloun, Bhushan) and a set of MUDDLE functions that
provide a facility for specifying retrieval commands with
MUDDLE syntax and semantics. The programs that transmit the
SURVEY data to the Datacomputer attempt to do so after each
measurement. If the transmission is unsuccessful, the data

-g2-

PROGRAMMING TECHNOLOGY

are stored localily, anud an attumpt to traasnit thc accumulated
data ic made at t.ue next measurcment time, The MUDDLLE
subsystem SURRLT provides a facility for automatic connection
to a special socket at tihe Datacomputer, tic generation of
Datalanguage from retrieval commands written in HUDDLE syatax
and semantics, the transmission of a request for retricval in
bDatalanguge syntax and scmantics, the arrangement and display
of tile retrieved data in a form appropriate for uuman vicwing,
and the arrangument of tile retricved data in a form
appropriate for processing by MUDDLE functions.

5. NETWORK MUDDLEC

It is quite clear that in a heterogencous nctwork
environment such as the ARPA HETWORKX the modus operandi
currently employed by local users is extremely cumbersone,
This is so because the diversity of host operating systums
would force a network user to employ many differeunt operating
procedures in order to use, or even to explore, the full range
of resources offered by the network. It is not the employment
of diverse operating procedures that in and of itsclf causes
the main difficulty; it is having to learn diverse operating
procedures. If a user identifies a resource that exists at a
remote host on the network and that could help solve iis
problem, it impedes Lis progress if he must stop and learn the
idiosyncrasies of the operating system in which the identified
resource resides. liis progress would be further impeded by
the need to learn the idiosyncrasies of editors, file transfer
mechanisms and other ancillary subsystems associated with the
remote operating system., Additionally, file storage
allocation must be obtained and file system conventions
learned. Instead of having to learn a lot of new procedures,
a user would like to get on witi the business at hand, that
is, the application of the identified resource to his probLlem.

It is not difficult, we have discovered, to make some
resources available directly to the ARPANET. (By directly, we
mean that a user who has general programming capabilities
elsewhere need only concern himself with acquiring knowledge
about the program he wishes to use and not about our operating
system or ancillary programs.) Thus, the user is provided
with the semblance or beginning of a network operating system
environment. Ve have identified two DMS resources, MUDDLE and
the DMS IMLAC assembler MIDASI, that we believe are
potentially useful to the network community. A first pass
implementation of a NETWORK 1UDDLE (Bengelloun, Bhushan,
Vezza) is already operational and a means of providing a
NETWORK MIDASI is being planned (Brescia, Vezza).

The WETJORK MUDDLE facility will provide direct access to
MUDDLE from the network. It will be usable by both humans and
programs that exist at remote hosts. In this latter endeavor,
we are type coding all of MUDDLE's responses (Bengelloun).

The NETWORK MUDDLE is operational on DMS socket 73

(decimal) and provides a user with an environment in which ae
can perform almost all the operations that a local Di1S user

-43-~

PROGRAMMING TECHNOLOGY

can, The differences between thc NETWORK MUDDLE environment
and the normal MUDDLE environment inciude: the IETWORK MUDDLE
Jdoes not allow eitier output to DMS secondary storage or input
from secondary storage other than from the WETMUD directory,
while the normal MUDDLE allows both of these operations.

These secondary storage restrictions at DMS do not hamper
the user because NETWORX MUDDLE provides a capability to
NFLOAD files from and to WPFILE objects to remote hosts, and
other gimilar facilities are being added. The NFLOAD and
NPFILE commands accept arguments specifying source and target
pathnames and access privileges at remote hosts. Figure 1 is
a diagram illustrating the logical connections that may exist
for a user accessing NETWORK MUDDLE from a TIP. As indicated,
more than one file transfer connection is allowed. This
proviaes a capability for files to have in them references to
other files that are to be inserted in the input stream at the
point of reference. The recurrion depth is limited by the
maximum number of simplex connections (16) permissible in
HETWORK MUDDLE, (This is really a current ITS restriction on
the number of software channels an ITS job may possess.) The
input file to NETWORK MUDDLE can exist on any host computer on
the ARPANET provided the host has a file transfer program that
behaves in accordance with the standard file transfer
protocol.

The best method of illustrating NETWORK MUDDLE is by
example., In the example presented below the "remote host” is
the DMS itself. We connected the CALICO USER TELNET via the
network to the DMS NETWORK MUDDLE socket. We did this because
it was convenient and because we wished to script the example
(a facility existing in our CALICO USER TELNET, which files
all terminal input and output). In the example we NFLOAD and
NPFILE to a TENEX system at SRI-ARC. We begin by commanding
our user TELNET to connect to socket 73 at DMS. The user's
console input is underlined. Comments we have ingerted are
enclosed in quotes and prefixed by a semicolon. All lines
beginning with a three digit integer are the remote host's
server FTP responses. (In normal mode, these responses would
be suppressed and the console output would not be Cluttered up
with them.) Everything else is NETWORK MUDDLE output.

@COWNECtion to host DM socket 73
completed.

MIT Dynamod System PLP-10

MUDDLE LISTENING-AT-LEVEL 1 PROCESS 1

“MIT-DMCG" "passwo

300 SRI-ARC PTP Server 1.27.0.0 - at THU 9-AUG-73 10:22-PDT
330 User name accepted. Password, Please,

230 Password OK. Send ACCOUNT before writing any files.

200 Account command accepted.

200 Socket command accepted.

255 SOCK 3276932615

250 ASCII retrieve of <MIT-DMCG>MUDEX.TXT;1 started.

252 Transfer completed.

*DONE"™

yym

-Gy~

REMOTE USER'S
CONSOLE

LOCAL USER'S
CONSOLE

ER PROCESS SPAC

ITS DISK
CONTROL
PROGRAM

ITS SUPERVISOR SPACE

FTP DATA CHANNEL

ammmnse S |MPLEX DISK CHANNEL

O DECISION NODE

NETWORK MUDDLE IN THE DMS3

LOCAL CONSOLE CHANNEL, TELNET CHANNEL OR FTP TELNET CONTROL CHANNEL

KD0TONHOAL ONIWWVHOOUd

PROGRAMMING TECHNOLOGY

1" WE JUST LOADLD FROM THE NIC A FILE
WHICHl HAS A \10? COIMMAND; L:E7T*S TEST IT"
<WHO>@

TTY UNAME JWAME CORE TOTAL IDX
T00 NSB.SM DUMP 008 010 13
TO0S5 S¥s SYS 052 119 32

DSN MSB IRSUPD 090 098 10
FREE CORE 018 OUT 126AL“DONE"

:"OK NOW WE WANT TO CHANGE THE COMMAUD HWAME TO LISTF AND
SEND IT SACK TO THE NIC"

SSET MUDOBJ (SETG LISTF ,WHO?)>¢
(SETG LISTF

#FUNCTION (("AUX"™ CH)
<SET CH <OPEN "READ" "TTY:.FILE. (DIR)">>
<REPEAT () <PRINC <READCHR .CH '<RETURN>>>>
<CLOSE ,CH>
*DONE"))
N 5 " X » HTYPE DO FORM> "SRI-ARC">
200 Socket command accepted.
255 SOCK 3276932614
250 Store of <MIT-DMCG>
MUDEX.TXT3;2;P777752;A3, ASCII type, started.
252 Transfer completed.
*DOWE"

; "NOW LET'S RETRIEVE IT"

<WFLOAD "MUDEX.TXT;2" *SRI-ARC">$

200 Socket command accepted.

255 SOCK 3276932615

250 ASCII retrieve of <MIT-DMCG>MUDEX.TXT;2 started.
252 Transfer completed.

“DONE"

<LISTE>

TTY UNAME JNAME CORE TOTAL IDX
TO0O MSB.SM DUMP 008 010 13
TO5 SYS SYS 052 121 32

DSN MSB IRSUPD 090 098 10

PREE CORE 012 OUT 117AL*DONE"

;"IN <UNSOAK> MODE; THE PTP REPLIES AND COMMANDS ARE KIDDEN.
IF AN ERROR RESULTS IN PTP, MUDDLE'S ERROR FUNCTION IS
CALLED WITH THE FTP DIAGNOSTIC."

NETWORK MUDDLE is in a state of flux; it is changing

rapidly because it is still a new development. We are
implementing new commands to make the syntax and semantics of

-6~

PROGRAMMING TECHNCLOGY

NLTWORK MUDDLE uniform with that of MUDDLL. Because UETWORK
MUDDLE is changing so rapidly, tic above example will in all
probability no longer work by the time this report is printed.
however, if anyone wishes to try an example, after connecting
to the WETWORK MUDDLLE socket type

<FLOAD "“EXAMPLE">$

to obtain a set of instructions about an up-to-date example
that will work.

A discussion on the important topic of whether or not
such a service is practical given current network bandwidths
is deferred to the section on Measurement of Performance of
DMS Network Programs.

It has occurred to us that there may be something to be
gained by merging the VFMS and NETWORK MUDDLL. It would
provide a uniform user interface to all files on the ARPANET
accessible to NLTWORK MUDDLE. However, it would be yet
another set of conventions to learn and at present little
would be gained because most users know the conventions
required by the host computers where their files exist -- and
tnat is what NHETWORK MUDDLE requires as a pathname argument.
In the future, as users become less concerned about where
files actually exist, as files migrate to where storage
exists, and as mass storage bceccomes available on the ARPANET,
it may be an attractive merger.

6. Facilitation Functions for Use of the ARPANET

A number of functions that facilitate the use of the
ARPAJET for a DMS user have been implemented in MUDDLE
(Bnushan, Holman, Hhart, Scandora) and CALICO (Bhushan,
Bressler, Cnan). These are intended to make the use of the
network, by a DMS user, as painless and convenient as
possible, Some examples of such facilitation functions are:
the "who" command in CALICO, which takes as an argument a host
name and returns a list of the users currently logged into
tliat host; and the "NLS" command in CALICO, which allows one
to type "NLS" and a password, at the appropriate time, and
after a short wait one finds himself connected to NLS at SRI-
ARC. There are a number of such facilitation features that
perform most of the login ritual on behalf of the user,
whenever he types a host name, so he doesn't have to remember
the rituals for each computer he may use., Some of them are
print, rename, copy, mail, delete, and listf. 1In addition to
performing the login function, appropriate TELUET modes are
set, i.e., character or line at a time, full or half duplex,
etc. (In the new protocol, the TELNET modes will be
negotiated.)

An InterEntity Communications protocol has been developed
and programs behaving in accordance with tie protocol have
been designed and implemented (Bressler, Chan). Taese
programs allow network users to link and communicate with each
other. Also, we are presently experimenting with a system

-47-

PROGRAMMING TECHNOLOGY

that allows NLS journal submission of ITS created files
(Biwshan) .

We have experimented with some functions in MUDDLE that
go beyond simple NLTWORK facilitation. These functions
provide invocation and use of programs at remote hosts in such
a manner that they appear to reside on the DMS, that is to
say, the programs are called without explicit intervention by
a user. We have implemented the MUDDLE functions DIFF
(Bhushan), INTEG (Holman, Bhushan, Vezza), and some other
ancillary functions that call MACSYMA (MAC's SYmbolic
MAnipulation system) to perform symbolic differentiation or
integration. We have looked into Provicing calls to the
CONSISTENT SYSTEM on MULTICS (Dehn, Vezza) and have some
preliminary plans to do so.

The automatic call of programs in remote hosts is
illustrated with the aid of MACSYMA (comments are spaced over
and preceded by a semicolon):

SCEHARIO FOR USING THE DIFFERENTIATE FUNCTION (VIA MACSYMA)

MUDDLE 42 IN OPERATION
. . 3 PLOAD from file.

*DONE"

SAMACSYM 1> } This gets a MACSYMA at either MIT-MATHLAB or
MIT-AI and the argument "1" tells pProgram
to supress remote computer's responses.

PLEASE BE PATIENT, MACSYMA LOADING MAY TAKE TIME

MACSYMA AT MIT-MATHLAB

T i true response from program, false if
both AI and MATHLAB are down

SDIFF "XA3+4*XA247*X">@ ; to differentiate an expression in

string form

"3I*XA2+8*X+7" t The program returns answer in string
form; computation is done by MACSYMA
at MATHLAB.

<DIFF 'XA4+7'XA3+§A31§:311:_:x:_:2:z!_ 3 to differentiate an

expression two times
with respect to X

R12*XA2+42%x+2
<DIS>9® 1 to disconnect from MACSYMA

"CONNECTIONS CLOSED HOW"

The implementation of the DIPF and INTEG functions has
made us acutely aware of one interesting fact. Basically,
subsystems are written tc interface to humans and their
interfaces are not particularly suited for automata. To
illustrate what we mean, let us suppose that our DMS program

-48-

PROGRAMMING TECHNOLOGY

has passed MACSYMA a function to integrate and is expecting to
receive the integrated function back. But, bcfore "IACSYi.A
f'.nisines the integration, the DMS program rceceives from the
remote host, "System going down in 9:59", or "Fatal error", or
any one of several less nocuous statements. Of course there
is also the hoped-for possibility that the answer will be
forthcoming; we must be able to recognize it also. How can
programs analyze and take correct action on such replies?

(The system-going-down message has interesting side effects --
suppose the system is to go down in about an hour and the task
to be run takes well over an hour, on the average, to
complete; clearly running the task is quite likely to prove
futile.) Quite clearly, a program capable of handling all
possible free format responses is beyond our current
capability. A protocol specifying response types would in
fact make message type recognition much easier. A simple set
of types would be: expected system lifetime, fatal error,
€rror in server process input stream, informative information
== something the user process can store for later perusal by a
human, etc.

In conjunction with our HNETWORK MUDDLE effort, we are
currently buildirg a taxonomy of NETWORK MUDDLE responses,
The responses are being type coded. We hope to be able to
collect them into categories that will enable an automaton to
determine whether it is prudent to continue, or cause an
interrupt to a higher level at the local host, or take other
desired actions,

7. Measurement of Performance of DMS Network Programs

We have made some measurements on the performance of
several of our network programs in order tc obtain an
understanding of the breadth of possibilities in usirg the
ALPANET and also to discover whether our programs are grossly
lacking in terms of performance. The measurement effort has
proved quite fruitful: in a number of instances minor if not
trivial modifications to network programs have increased their
performance with respect to some measure by an order of
magnitude or more. A measurement facility associated with the
FTP (Bhushan, Chan) was implemented and since Pebruary has
intermittently monitored file transfers to and from the DMS.

A summary of the results is shown in Table 3. The
measurements were taken on 265 file transfers during the
period February 1973 to July 1973, 1In all 53.9 million bits
were transferred. The DMS was a sender or receiver in both
user and server mode, and both image and ASCII files were
trarsferred. "Data recorded® distinguishes between whether
the DMS functioned as a sender or receiver, user or server,
and whether image or ASCII files were transferred.

From the data in Table 3 it is clear that we are not yet
operating near the network bandwidth. The raw data show that
bandwidths of better than 27 kilobits per second have been
achieved, and that large files are transferred at
significantly higher transfer rates than smaller ones. The
observations collected thus far indicate that data transfer
rates depend strongly on the input buffer size.

-49-

PROGRAMMING TECHNOLOGY

TABLE 3. MEASURE™MENT OF THZ DMS FILE TRANSFER PROGRAMS

Trans fer mode # Data Bits Data Transfer CPU~time

Transferred Rate Seconis/

Megabits Bits per Megalit

Second

Server Sending Data 3.8 7504 2
Server Receiving Data 19.8 7441 1
User Sending Data 8.7 7982 2
User Receiving Data 21.5 8839 S
ASCII B mode transfer 3.3 2435 12
36 bit image mode transfer 50.5 9472 2
Combined Data transfers 53.9 8042 3

An important question is: given the data transfer rates
achievable on the ARPANET, are services like the MUDDLE
NETWORK practical? We think that some such services are in
fact practical, mainly because many programs perform
computation on the input data stream which has the effect of
drastically limiting the data transfer rate between secondary
and primary memory. Taking the example of a MUDDLE FLOAD, the
file is evaluated by the interpreter as part of the FLOAD
process., Some simple measurements (Vezza, Bengelloun) made
on the MUDDLE FLOAD function indicate that one can expect
(currently), for typical MUDDLE text files, effective data
transfer rates (fully evaluated) between primary and secondary
memory of about 3-10 kilobits/second. (The 3 kilobits/second
is more typical than the 10 kilobits/second.) This data rate
can be and is achieved by data transfers on the ARPANET.

A RESTORE or a SAVE in MUDDLE (which restores or saves a
MUDDLE environment) achieves & much higher data transfer rate
than a FLOAD or PFILE. Under typical load conditions, one can
expect effective data transfer rates between secondary and
primary memory of 36 kilobits/second. This is close enough to
the current maximum achievable network bandwidth that
restoring or saving environments in NETWORK MUDDLE will be
slower than in MUDDLE. However, this is done infrequently --
typically at start up and a couple of times during a console
session, and restoring even large files such as the MUDDLE
compiler is not likely to take more than 2 or 3 minutes.

8., ICCC
A highlight of the early part of the reporting period was

the Special Project Demonstration of the International
Computer and Communications Conference (ICCC) held in

PROGRAMMING TECHNOLOGY

Washington, D.C. Several members of the Programming
Tecinology Division staff (Vezza, 3hushan, Bressler, laverty,
Lebling) helped organize and preparc scenarios for the Special
Project Demonstration., Light members of the Division attended
the Conference (Vezza, Bhushan, Bressler, haverty, Lebling,
Licklider, Reeve, Seriff) to help set up the equipment and
demonstrate resources on the ARPAUET. Three others (Brescia,
Chan, Cutler) provided technical backup to insure the
availability of the DMS.

L. AUTOMATIC PROGRNMMILG

The term "automatic programming” is being used these days
both (a) as a general "chapter heading® to cover a wide range
of approaches to improvement of the preparation of software
and (b) as a specific identifier for (the development of)
prograns tnat write programs with little or no help from human
beings. The earlier section on "Computer-Aided Programming"”
falls within the general sense of “automatic programming", but
in this section tie more specific sense is intended. 1In the
Programming Technology Division, the level of effort
contributing to this area is small, and the work itself less
advanced than that of the Automatic Projramming Division.

1. Automatic Composition of Functions from Modules

A fundamental and appealing idea in automatic programming
is to provide an automatic programmer with a problem
specification ard a library of program modules and to have the
automatic programmer select the required modules and compose a
program that will solve the specified problem. An advanced
version of such an automatic programmer would involve a
problem-acquisition subsystem, and its modules would include
generators of code as well as “canned” macros, functions, and
subroutines. We are thinking about such matters and exploring
some of the problems involved, but most of our tangible
results thus far pertain to a guite simple system, an
automatic composer of MUDDLE functions dealing with a very
restricted domain.

LAP (Little Automatic Programmer) receives its problem
specification in the form of a sample input-output pair such
as

IN~S>ABCDEFGHIUJKL)
OUT->((ACEGIKI(BDFHJL))

That pair is intended to challenge LAP to find or compose a
function that will put the odd-numbered components of the
value of its argument into one list and the even-numbered
components into another list and then return a list consisting
of the two lists in sequence. (There are other possible
interpretations of the sample pair, of course, but almost
everyone sees the intended interpretation first, and so should
an automatic programmer.) The symbols employed by the
»client® in setting up the problem specification (the sample

-5]1-

PROGRAMMING TECHNOLOGY

pair) are not restricted to letters., They could be *"JOE",

“BILL", "PETE", ... cr "217%, "327", *182906", ... They serve
only as names,

“he module library of LAP consists of MUDDLE functions.
Because LAP runs slowly and is used only as an exploring tool,
not as a serious programmer, the library is usually restricted
to about a dozen functions, but in principle there is no limit
to its size,

The operation of LAP is illustrated by the script
reproduced below. For this run, the library included 15
modules, three of which were:

REVERSE r._verses the order of the
components of a list

ROTATE. RG rotates the components of a list
one place to the right

ROTATE.LF rotates the components of a
list one place to the left

The sample input-output pair was
IN->(ABCDEFGHTIJKIL)
OUT->((BDFHJL) (CEGTIKA))

That pair was intended to convey to LAP a request to find or
compose a function that rotates the components of the input
list one place to the left and then subdivides the list into
two parts, one containing the odd-numbered members and the
other the even-numbered members. The version of the LAP in
this illustration is 6. It explains what it is doing as it
runs,

Lap.6 Script

As I understand the problem, I am to find or synthesize a
MUDDLE function that will convert inputs like the sample input
into outputs like the sample output. The sample input and
output are:

<SET SMPL.IN '(ABCDEPFPGHIJKL)>
<SET SMPL.OUT '((BDFHJ L) (CEGTIKA))>

I shall try to find or synthesize a function that will meet
the requirement. As I work, I shall display some of my
intermediate steps. At certain points, I shall have a lot of
processing to do, and at those points 1 shall fall silent for
what will probably seem to be quite long intervals., My first
step is to describe the sample input-output pair with the aid
of descriptors. The reason for doing so is that I want to be
able to select a small, pertinent part of my data base in
which to search for a function that will effect the required

=82~

PROGRAMMING TECHNOLOGY

pair) are not restricted to letters. They could be *Jot",

*BILL", "PETE", ... or “217%, "327", *182906%, ... They serve
only as names,

“he module library of LAP consists of MUDDLE functions.
Because LAP runs slowly and is used only as an exploring tool,
not as a serious programmer, the library is usually restricted
to about a dozen functions, but in principle there is no limit
to its size.

The operation of LAP is illustrated by the script

reproduced below. For this run, the library included 15
modules, three of which were:

REVERSE reverses the order of the
components of a list

ROTATE.RG rotates the components of a list
one place to the right

ROTATE.LF rotates the components of a
list one place to the left

The sample input-output pair was
IN->(ABCDEFGHTIJKL)
OUT->((BDFHJL) (CEGTIKA))

That pair was intended to convey to LAP a request to find or
compose a function that rotates the components of the input
list one place to the left and then subdivides the list into
two parts, one containing the odd-numbered members and the
other the even-numbered members. The version of the LAP in
this illustration is 6. It explains what it is doing as it
runs,

Lap.6 Script

As I understand the problem, I am to find or synthesize a
MUDDLE function that will convert inputs like the sample input
into outputs like the sample output. The sample input and
output are:

<SET SMPL.IN *(ABCDEFGHIUJKL)>
<SET SMPL.OUT '((BDFHJL) (CEGTIKA))>

I shall try to find or synthesize a function that will meet
the requirement. As I work, I shall display some of my
intermediate steps. At certain points, I shall have a lot of
processing to do, and at those points I shall fall silent for
what will probably seem to be quite long intervals. My first
step is to describe the sample input-output pair with the aid
of descriptors. The reasorn for doing so is that I want to be
able to select a small, pertinent part of my data base in
which to search for a function that will effect the required

-52-

PROGRAMMING TECHNOLOGY

transformation or for component functions out of which to
synthesize such a function. !y second step is to translate
the sample input-output pair into a canvnical form that is
independent of the particular symbols used in the sample pair,
This step takes me quite some time. Wien I have completed it,
I shall display the canonic input and output.

<SET INPUT '(1 2345678 9 1011 12]>
<SET OUTPUT ‘({2 4 6 8 10 12) (3 57 911 1))>

My third step is to substitute for the canonic forms of tne
sample input and output another form that is similar to an
outline. In this form, there is a header, which 1 shall not
explain here, and a body. The body consists of a list of
positions and a list of the canonic symbols that occupy taose
positions. As soon as 1 have made the outlines, or ‘'inlines’',
as I call them (because the elements of the component lists
are 'in line' in their lists rather than being paired with
corresponding elements as in an ordinary outline), I shall
diesplay them.

<SET IN.ILNW

*((100 1)
((L 234567891011 12)
(1234567891011 12)))>

<SET OUT.ILN
*((100 2)
((101 102 103 1G4 105 106 201 202 203 204 205 206)
(2 4681012357 911 1)))>

That concludes my preamble. Now I sihall go into the main
business of finding or synthesizing the required function,

ENTERING AP,6. FROM LLVEL 0
<SET LEVEL '1>

vow [shall look in my data base for a function, already
prepared, tihat will meet the requirement. I shall place on a
pushdown list the names of the functions I examine. The
pushdown list is called 'PDL'. I shall prime it with the
symbol *'2Z', but that symbol will almost immediately be
removed in favor of the first trial function name.

<SET PDL '(2Z)>

Next, I shall find the output inline that would be yielded by
each trial function. That output I shall call *OUT.ILN.'
(with a period on the end). I shall compare OUT.ILN. with the
desired output 'OUT.ILW' inline, and, if they match, I shall
conclude that I have discovered a ready-made function that
will meet the requirement. If no trial output matches the
desired output, I shall move on to try to synthesize a
func:ion out of available component functions,

=53~

PROGRAMMING TECHNOLOGY

<SET I ‘1>
<SET PDL '(IS.MOD.2)>

<SET OUT.ILN.
*((100 2)
((101 102 103 104 105 106 107 108 109 110 111 112)
(1234567891011 12)))>

<SET OUT.ILN
' ({100 2)
((101 102 103 104 105 106 201 202 203 204 205 206)
(24681012357 9111)))>

... Several unsuccessful attempts omitted here ...

DID NOT FIND FUNCTION THAT FILLS THE BILL SO WILL
TRY TO SYNTHESIZE REQUIRED FUNCTION FROM COMPONENT FUNCTIONS

My approach, now, will be to select tentative ‘first®
functions and then, for each first function, to place 'second’
functions in tandem, one at a time, to create a new, compound
function that may meet the requirement. I shall test each
tandem pair made with first function I = 1 and, if none is
satisfactory, try another first function 1 = 2 and go through
the list of possible second-functions again. The first
function will be the inner function and the second function
will be the outer function in a tandem such as:

<DEPINE ALPHA (S) <SECOND.PUNCTION <FIRST.FUNCTION .S>>>
<SET I 'L>
<SET PDL ' (ROTATE.LF)>
<SET OUT.ILN,
' ((100 2)
({101 102 103 104 105 106 107 108 109 110 111 112)
(L23456789101112)))»
ENTERING AP.6.1. FROM LEVEL 1
<SET LEVEL '2>
<SET PDL '(ZZ IS,MOD.2)>
<SET J '1>
<SET PDL ' (IS.MOD.2 IS.MOD.2)>
<SET IN.ILN
' ((100 2)
({101 102 103 104 105 106 107 108 109 110 111 112)
(1234567891011 12))»

<SET XF.ILN,
*(((100 1) (100 2))

-S4

PROGRAMMING TECHNOLOGY

((L 23456789 1011 .2)
(101 102 103 104 105 106 107 108 109 110 111 112)))>

<SET OUT.ILN. '#FALSE ()>
<SET OUT.ILN
*((100 2)
({101 102 103 104 105 106 201 202 203 204 205 206)
(2468 10122357911 1)))>
<SET J '>
<SET PDL '(/S.MOD,.2 ROTATC.LF)>

<SET IN.ILN

*{(100 1)
({1 2345678391011 12)
(2345678910 11121)))>

<SET XF.ILN.
' {((l00 1) (100 2))
({1 234567891011 12)
(101 201 102 202 103 203 104 204 105 205 106 206)))>

<SET OUT.ILN.
*((100 2)
((101 102 103 104 105 106 201 202 203 204 205 206)
(2468101235791l 1)))>

<SET OUT.ILN
*((100 2)
((101 102 103 104 105 106 201 202 203 204 205 206)
(24681012357 9111L))>

LEAVING AP.6. BECAUSE HAVE FOUND NEEDED FUNCTION

I think I have a function that will £ill the bill., It is:
<DEFINE AP.RESULT (S) </S.MOD.2 <ROTATE.LF .S>>>

To test the function, I shall apply it to the sample input and
gee whether or not it yields the sample output that you gave
me. If the function I came up with turns out not to be
applicable to the input, a MUDDLE error will result, and
MUDDLE will be in its listening loop. If my function is
applicable, I shall display the sample input, the sample
output you gave me, and the output produced by (result
returned by) the function. Yes, it checked.

SET SMPL.IN '"(ABCDEFGHIJK L)>
<SET SMPL.OUT ‘*((BDFHJL) (CEGIK A))>

<SET TEST.OUT *((BDF K JL) (CEGIK A))>
END OF LAP.6 SCRIPT

-5§-

PROGRAMMING TECENOLOGY

An inherent and essential difficulty in automatic
compcsition of furnctions from modules is delimitation of the
search space. The procedure built into LAP is primitive: (a)
make a few measurements of the sample input-output pair, (b)
derive descriptors -- just five of them in the case of LAP.6 ~-
- from the measures, (c) compare those descriptors with the
descriptors associated w’th each function in the data base,
{d) select, for the subset of the library to be searched,
those functions whose descriptor patterns match the pattern of
the sample-pair descriptors, and (e) search the subset
exhaustively. As illustrated, the search is conducted in
phases: first a search for a single function that will meet
the requirement, then a search for a pair of functions, then a
search for a trio, and 80 on. If there are M functions in the
selected subset, and if the search is limited to singles,
plitl‘ ess, and N-tuples, the worst case involves examining
M+ M2 +.,..+MN¥ functions. How feasible that is depends, of
course, upon the cost of examining a typical function, but
more cruciaily upon the values of M and N.

To limit the cost of examining a typical function, LAP
was designed not actually to apply a function to the sample
input and test for a match to the sample ocutput but, instead,
to deal with surrogates of functions, as illustrated in the
script. LAP deals with structures called "input outlines®,
"sransfer outlines®, and "output outlines®, These structures
abstract from inputs (arquments), functions, and outputs
{(results) the information that pertains to the subject of
format with which LAP is concerned. In most instances it is
far le:is time-consuming to apply a transfer outline to an
input outline and test the resulting output outline than it is
to apply a function to an argument and test the result.

In order to restrict M, the size of the searched subset
of the library, it is desirable to have good procedures for
selecting the subset. At present, LAP has only token
procedures. Some of our current exploration of ideas about
the matter are described in the next section.

2. How to Describe What Functions Do

It is essential both as a hasis for retrieval of library
functions, as discussed earlier, and as a basis for automatic
programming, as discussed in the preceding subsection, to be
able to describe what specific functions do when applied to
arguments. The subject is deep, and the depths are full of
difficulties, even impossibilities. It is closely related, of
course, to the subject -~ indeed, part and parcel of the
subject =-- of specifying what it is one wants a function to do
when he requests a library or an automatic programmer to
provide the functions. Tha technique of specifying by sample
input-output pairs is seen to be severely limited when studied
in any depth, but in fact it is nevertheless a very useful
technique and a technique frequently employed in comsunication
between human programmers and their clients. Our approach to

56~

PROGRAMMING TECHNOLOGY

the behavioral description of functions is, in a similar
spirit, to see how effective descriptions can be in practice
and not to despair at the first appearance of an infinite set.

The descriptions with which we are currently working go
only a little way beyond the descriptions of CALICO

subroutines mentioned earlier. The current descriptions
include:

l. Types and structures of arguments,

2. other a priori objects (than arquments)
upon which behavior of function depends.

3. Type and structure of result.

4. Other a g%steriori objects (than result) that
may be affe

cted by application of function.
5. Relaticins between 3 and 1 and 2.

6. Raelations between 4 and 1, 2, and 3.

7. Descriptors.

8. Category.

9. Functions that may be called
by this function.

10. Library functions that call this function.

11. Atoms in this function that have global
values that are not functions,

12. Atoms in this function that have local
values,

In connection with items 1, 3, and 5, we are developing a
lanquage for description of structures and declaration of
types. Let it suffice here to give the terms and three
examples of expressions in a part (ALPHA) of the language. In
each example, the description is given first in the
description language and then in a more conventional notation.
Brief explanations follow the trio of examples.

-57=

PROGRAMMING TECHNOLOGY

NOTATION OF DESCRIPTION LANGUAGE ALPHA

A ve0p2Z, }
General names
A, B,C, D
E ELEMENT
F FORM
G, H Variable integers
I INTEGER
J, K Variable (index) integers
L LIST
M, N Constant integers
() OBJECT
P ATOM
Q QUANTITY (numeric)
R REAL
s STRUCTURE
T S8TRING
] UVECTOR
v VECTOR
W BOOLEAN
X, ¥, 2 Variable real numbers
. (period) Separator (same level)
/ Separator (go down one level)

Left arrow (result from argument)

(center dot) or
Separator (toggle: enter/leave ALPHA)

| (vertical bar)

58~

PROGRAMMING TECHNOLOGY

1. *S/S [[0) 012 e Oy, 1 oo
o e [ON‘ ONZ s e ON“N]]

2., eVAB3/AL3E.BU4I [(:, E, E,) I[6 3 2 151]]
3. LaL/LLN*GE_SAB/ASC.BSN/SGL

((Cl CZ s s 0 Cm) (E1 Lz L) BN)
i >y

| N

- ~—
A b

((C1 €2 ... Om) ((Eyq Ejqp eee Eyg,)

P aee (4“1 N2 °re ENG")))
~ L -
A v

B
The first example describes a structure (i.e., any
structured MUDDLE object) consisting of any number of
structures consisting of any number and kind of objects,

s

The second example describes a vector consisting of two
components, the first being a list of three (unstructured)
elements and the second being a uniform vector of four
integers.

The third example describes an operator that accepts the
structure described by the rignt-hand side and returns the
structure described by the left-hand side. The former is a
structure consisting of two components, A and B, A being a
structure of components C and B being a structure consisting
of N structures, each consisting of some numbcer G of elements
-= with G having possibly N different values, The latter is a
ligt of two components, A and b, A being the same as on the
right-hand side and L being a 1ist of G, + G, +...+GN
{(signified by H*G) elements,

This is not the time to explain in detail the language,
which is changing in the light of experience, but perhaps the
illustrations will convey an idea of the objective: a compact
nctation for dealing with complex structured objects. A part
(BETA) of the language not illustrated includes a much larger
vocabulary of terms. Another part (GAMMA) is a set of default
conventions dealing with relations between left-hand and
right-hand sides of operator descriptions. We think that it
will be possible to incorporate such relations into the
descriptions in the most important and prevalent instances
without significantly complicating the language. For example,
3 can be interpreted as implying that the elements E of the
result are precisely the elements E of the argument, all
arrayed in order in a single list instead of being subdivided
into N substructures,

The most difficult components of the description of a
function, it appears, are items 5 and 6:

5. Relations between result and arguments a:.d
other a priori objects.

-59-

PROGRAMMING TECHNOLOGY

6. Relations between a posteriori objects

(other than result) and arguments, other a priori
objects, and result.

We have explored several approaches and are developing a
system that incorporates the following:

a, Use of a simple MUDDLE function as (part of)
its own descriptioa. E.g., where "G" is
“GREATER", "L" is "LESS", and "==" jg
*HUMERICALLY .EQUAL",

<DEFINE G==? (Ql Q2) <NOT <L? .0l .Q2>>>

b. Use ol a simpler but less efficient MUDDLE function
as (part of) the description of a more complex but
more efficient MUDDLE function that exhibits
the same nontemporal behavior.

c. Use of one or more sample input=output
pairs, as in LAP.

d. Use of the language ALPHA.BETA.GAMMA,
described earlier.

e. Statement in a slightly modified MUDDLE of what
is true of the world after the function has been
executed.

f. Description in English, as terse as possible,

To expand slightly on e, consider a simplified version of
the function INCR:, one that accepts as its argument an atom
that has a local value, returns a number one greater than
that value, and leaves the atom pointing to the resulting
value. One can take care of the result by specifying that it
is the same as would lLe returned by the (already described)
function 1.GR. To describe the side effect, the fact tnat the
atom (call it A) now points to a new {(incremented) local
value, however, it is necessary to write something like:

<TR <=x? ,A <1.GR <HOLD .A>>>>

That expression is interpreted by a metafunction that
evaluates tne HOLD, then executes INCR:, and then cvalutes the
remainder of the description. The "TR" rsfers to a function
that can return "true® or "false", and i% asserts that "TR"
will return "true®. Thus the description says that INCR:
returns a value one greater than the local vali.: originally
pointed to by A and that, after execution, A pointe to that
latter local value.

The approach just illustrated is derived, of course, from
program verification. It appears that it will be useful, and
perhaps less complicated, in program descriptior. Even in the
latter area, complexities arise, but they seem to be

-60-~

PROGRAMMING TECHNOLOGY

tractable. One writes a set of MUDDLL functioas, which need
not be efficient, to test aspects of the state of ti. world.
To describe a given function, then, he configures some of the
test functions into a single complex test and asscrts TR of
its result. 1In describing dependencies of tie a posteriori
situation upon the a priori situation, of course, tue HOLD
function plays an essential role.

-61-

PROGRAMMING TECHNOLOGY

1,

10.

11.

12,

13.

14.

15.

16.

REFERENCES

Broos, Michael S,, "Implementation of the VECTOR
Data Type", SR.19.12, April 1973,

Burmaster, D.E., Karolyn Martin, and J.C.R.
Licklider, “Convention II: Standards for Listings:
Overview”, GA.01.09.00,

Cutler, Scott E., "Computer Aided Evaluation and
Design of Peedback Systems", S.B. and S.M.
Thesis, Department of Electrical Engineering,
M.I,T., June 1973,

Daniels, Bruce, and Ed Black, "MUDDLE Graplhics
User's Manual®, SYS.11.04.

Laniels, Bruce, "MUDDLE Micro-Manual®, SYS.11.03.

Data Types Special Interest Group, "Data Types for
the Dynamic Modeling System", May 1972 {(Memo) .

Galley, Stuart W., "Debugging with ESP ==
Execution Simulator and Presenter®, SYS.09.01.

Haverty, Jack F., "Overview of Data Types",
SR. 19.10.

Haverty, Jack F., "Implementation of the String
Data Type", SR.03.11,

Haverty, Jack F., Jeff Harris, and David Lebling,
“Implementation of the Array Data Type®, SR.19.07.

llughett, Paul W., "Influence Nets: Mapping the
Structure of a Process”, S.B., and S.M. Thesis,
Department of Electrical Engineering, M.I.T.,
June 1973.

Hughett, Paul W., and J.C.R. Licklider, “Conven-
tion II: Standards for Listings: Organization
of the Standards®, GA.01.09.01.

Knight, Frances, “Convention II: List of Conven-
tion II Documents®, GA.01.00.

Lebling, P. David, "Printing Standard Data Types:
DATCRP and DATPRT", SR.19.11.

Licklider, J.C.R., and Karolyn Martin, “"Conven-
tion IXI: Overview of Glossaries®, GA.01.02.00,

Licklider, J.C.R. and Karolyn Martin,
"Convention II: Glossary of Standard Notation®,
GA.01,.02.01.

17.

18.

19.

20,

21.

22.

23,

24.

25,

26,

27,

28.

29,

30.

31.
32,
33.

34,

PROGRAMMING TECHNOLOGY

Licklider, J.C.R., and Karolyn Martin, "Conven-
tion IXI: Glossary of Standard Pferms®, GA,01.02,02,

Licklider, J.C.R., and Karolyn Martin,

"Glossary of Abbreviations and Erpansions",
GA.01.02,03,

Licklider, J.C.R., "Convention II: Standard MSR
Headers, Data-Set Headers, and SDAT/USDAT Triads",
GA,01.03.

Licklider, J.C.R., "Convention IT: Data Types”,
GA.01.04.

Licklider, J.C.R., "Convention II: Standards for
Listings: Remainders®™, GA.01.09.03.

Licklider, J.C.R., "Convention IT: Subdivision of
Packages", GA,01.11.

Licklider, J.C.R., "Convention II: DSRs, QSRs and
RSRs", GA.0l1.12.

Licklider, J.C.R., "Convention II: Miscellaneous
Update Information®", GA.N1.14.

Licklider, J.C.R., "Convention II: Design of Data
Sets", GA.01,15.

Licklider, J.C.R., "Convention II: The Data System",
GA.01.16.

Liu, Mark li., "DETAIL: A Graphic Debugging Tool",
B.S. Thesis, Department of Electrical Engineering,
M.I.T., February 1972,

Martin, Karolyn, "Convention II: Standard Format
for DG System Documents®, GA,.01.01.

Martin, Karolyn, “"Convention II: Standards for Naming
Files™, GA.01,05,

Michener, James, et al, RPC #493, "Graphics
Protocol™, NIC #15258,

Pfister, Greqg, "A MEDDLE Manual", SYS.11.02.
Pfister, Greg, “A MUDDLE Primer?", SYS,11.01.

Reeve, Chris, "ISR, MSR, QSR, RSR and DS Macros”,
MCR,.01,.04 (Draft),

Reeve, Chris, "Convention IX: How to Usec
MACRO TS to Conform to Convention II", GA.01l.0€,

~63=

PROGRAMMING TECHNOLOGY

35,

36.

37.

38,

39.

Reeve, Chris, Marty Draper, D.E. Burmaster,
and J.C.R. Licklider, "Convention 1I: Standards for
Listings: Listing Abstracts®, GA.01.09.02.

Reeve, Ciris, and J.C.R. Licklider, "Convention II:
How to Take the First Step into the HNew
World of CAREDL", GA.01.13.

Reeve, Chris, "Implementaion of Location-
Insenstive SRs Using the OFFSET
Pseudoinstruction®™, GA.01,17.

Reeve, Chris, "Taking the Second Step into the
tlorld of Pure DYNAL", GA.01.18 (Draft).

Seriff, Marc S., "Virtual File Management Service for

the ARPA Network", S.M., Thesis, Department of
Electrical Engineering, M.I.T., June 1973.

~64-

PROGRAMMING TECHNOLOGY

PUBLICATIONS

Black, Edward H., "Computer Graphics", Cross Talk,
Vol.2, No. 3, Department of Electrical Englineering,
M.I.T., December 1972, p. 3.

Galley. S. W., "PDP-10 Virtual Machines", Proceedings
of Workshop on Virtual Computer Systems, ATM SIGKRCE-
SIGOPS, Harvard University, Marc 73, pp. 30-34.

Licklider, J. C. R., "Consumer (Communication) Networks

for Computers™, RCA/MIT Research Conference, RCA
Engineer, Vol. 18, No. 5, February/March 1973, pp. 69-70.

-65-

AUTOMATIC PROGRAMMING

Academ.c Staff

Prof. M. L. Dertouzos
Prof. G. A, Gorry
Prof. C. Hewitt

Prof. B. Lisiov

Prof. S. E. Madnick
Prof. W. A. Martin
Prof. J. Moses

Prof. J. Weizenbaum

DSR Staff

E. R, Banks
R. A. Bogen
J. P, Golden
J. P. Jarvis

R. Schroeppel

Graduate Students

S. L. Alter D. L. Isaman

R. V. Baron P. Jessel

V. A. Berzins R. B. Krumland

P. B. Bishop J. Kulp

G. Brown T. Landau

J. S. D'Aversa M. Laventhal

A. C. England C. Lynn

S. P. Geiger W. S. Mark

M. J. Ginzberg M. L. Morgenstern

Precediag page bank

-67-

R.

V.

P.

R.

L.

S.

T.

S.

J.

J. Fateman
S. Fless

S-H., Wang

M. Shah
Sunguroff
C. Watson

L. White

Pfister
Rashwan
Ruth

J. Steiger
Tsien

R. Umarji
Victor

A. Ward

Wish

T. Wong

S. Adamczk
I. Badlan

G. Benedict
L. Davenport
Law

J. Littleboy
M. Macrakis
E. Matson
Niamir

S. Lague

Miola

Graduate Students (cont.)

Undergraduate Students

Support Staff

Guests

J=t. Wang

-68~

Yun

L. Peskin

T. Petyraitis
P. Reese

C. Rosen

E. Saunders
M. Siegel

L. Steele

M. Trager

E. Zippel

J. Robinson

Wantanabe

AUTOMATIC PROGRAMMING DIVISION

INTRODUCTION

The objective of the Automatic Programming Division is
to develop fundamentally new software technology for the pro-
gramming and use of computers in practical applications such
as business data processing, medical diagnosis, symbolic applied
mathematics, automatic control, and management decision systems.
We are attempting to do this not through the construction
of a single software system, but through the development of
several prototype systems, each designed to explore solutions
to one or more problems faced in current programming practice.
A number of these systems and their results are described
below.

Since this is the first year the division has existed,
our goal has been to bring as many programs as possible to
the point of a simple demonstration. In the coming year some
of these will be revised, others extended, and some abandoned.
A number of new faculty and senior research pecple will be
joining us next year; they will certainly have ideas of their
own. As these are also tested we expect to gain the confidence
to build larger systems as we have done in algebraic manipula-
tion. 1In that area our MACSYMA system now has become one
of the largest and most sophisticated applications systems
available and has been used very successfully in the past
year.

The division is currently broken down into four groups:
Automatic Programming, Mathlab, Medical Decision Makirg, and
Engineering Robotics. We have included separate reports for
each group. It may also be helpful to summarize the state
of the division as a whele.

The division has enhanced its computational resources.
The MATHLAB PDP-10 has been expanded and the software upgraded
to support multiple users of large programs. A good LISP
has become operational on MULTICS, and the Engineering Robotics
Group has developed software for the PDP-11/45.

A number of applications suitable for research have been
identified in mathematics, medicine, control, and management.

Research is being done on the automatic scheduling and
allocation of computational resources, improving the ability
of computer programs to explain what they are doing, acquiring
problem descriptions from users, and the development of formalisms
for describing the knowledge possessed by experts to machines
so that the machines can use it effectively in solving problems.

-69-

AUTOMATIC PROGRAMMING GROUP

A. INTRODUCTION

The focus of the Automatic Programming Group is the applica-
tion of computers to domains where much is already known about
how to solve a given problem, yet the great variety of specific
problem contexts which arise has so far made it impossible to
write a single computer program which would apply in every
situation. The basic idea underlying our attack on this issue
is to represent the knowledge about how to solve problems in
the given domain at a higher level of abstraction than is
currently done. This abstract knowledge is then used to generate
a program for any specific user cortext.

Management data processing, and information and decision
systems, provide a good example of the type of problem domain
we have in mind. Figure 1 ghows a classification of some soft-
ware packages currently offered for sale by IBM. These fall
roughly into two categories:

a) Support of higher level decision making through
the selective retrieval of data and the applica-
tion of extremely simple models (mathematical in
character),

b) Automation of daily operational procedures through
e incorporation of knowledge about how to perform
these procedures into computer programs,

Although such systems may perform well in the environment
for which they were designed, it is Aifficult to adapt them to
a new environment if changes other than changes in parameter
values are required. This is particularly true of the opera-
tional level programs which contain knowledge of particular
business procedures.

A step toward improvine this situation has been taken by
the IBM System 3 Application Customizer and similar programs
offered by other firms. The customer is given a long multiple
choice questionnaire. a typical question might be "When a
customer transaction is processed, the computer can compare
the amount he owes to whatever credit limit you assign him ana
Print a note if the amount due is over the limit. Should this be
done?” The answers to these questions are used to selact pre-
coded program segments and assemble them into the user's program,
This approach provides much greater flexibility than the pre-
coded program products, and it also provides the user with a
structure for the decisions he must make, suggesting the standard
choices. However, the user does not have any way to specify a
procedure which is not incorporated into the questionnaire and
there is no way for the system to automatically alter the data
structure used in the solution to be more efficient or more
compatible with other uses of the same data.

We are constructing a system, Protosystem I, which will go

=70~

AUTOMATIC PROGRAMMING

Structured Support of

Structured Problems Unstructured Problems Unstructured
Planning 1) Planning systems
generator
2) Public utility financial
planning system
Management Control 1) Project management
system IV
2) Aerospace info. and
control system, project
scheduling, budgeting,
evaluation, and control
Operational Control
1) Agribusiness Mgmt. info. 1) Dynamic shop floor
sSys. control
2) System/3 bill of 2) Capacity planning-
waterial processor finite and infinite
loading
3) 05/360 iaventory control {3) Consumer goods

4)

3)

6)
7)

8)

9)
10)

11)

System/360 order allo-
cation system

05/360 requirements
planning

Advanced life info. system

Shared hospital accounting
system

Shared laboratory
info. system

IBM basic courts system

Consumer goods system
forecasting

PALIS automobile-
homeowners

system-allocation

Figure 1.
Classification of 1BM "Program Products"

-71-

AUTCMATIC PROGRAMMING

considerably further in providing user flexibility. This system
is shown schematically in Figure 2. As with the Customizer, the
user's interaction will begin with a questionnaire, but in Proto-
system I, it will be interactive. The nature of the questions,
however, will be altered from asking for choices of procedure

to asking for information describing the customer's environment.
The questionnaire will not require that the user give multiple
choice answers: instead, constructive responses will be allowed.
How, then, can we be sure that the system "understands" the user's
problem? We have constructed a relational modeling language,
MAPL, in which we can construct a general model of the environ-
ment of a business procedure such as billing or order alloca-
tion. We require that the user's problem be an instantiation

of this general model. (MAPL is described in section I.) This
area of problem acguisition is one we will be exploring further
in the future.

Once a description of the user's problem has been acquired,
the system guides him in the construction of a solution in the
form of a block diagram. We have not yet implemented this key
part of the system except in very elementary form. However,
the Ph.D, thesis of G. Sussman, who will be joining Automatic
Programming next year, contains many of the techniglies which we
will need for a full implementation.

Once a solution has been found, there is a possibility that
it is not what the user wants. The user may have mis-described
his problem or he may have made a bad decision on some aspect
of the solution where he did not follow the system's advice. One
way the user can gain confidence in the solution is to explore
its behavior through simulation. In section II we describe a
program which not only simulates the user's solution but then
attempts to explain the difference between the simulation and
what the user expected by making deductions about the model.

It will also be useful if the user can ask questions about
the system's knowledge and its solution using a subset of
English. A program for translating from English to MAPL is
described in section III. Having the ability to query MAPL
models with English also allows us to experiment with systems
which give more support to management decision makers.

Finally, Protosystem I will translate the user's solution
from block diagram form into PL/I. Section IV traces a sample
problem through this translation.

B. MAPL

MAPL is a language for building relational models of the
world. It is not yet complete; in particular the facilities for
quantification and for describing how to make deductions are still
evolving. The use of relational models has become popular in
file design, artificial intelligence languages, and psychology.

We hope MAPL will evolve into a useful implementation of the best
ideas and will allow subsequent researchers to build on the work
of others.

In MAPL, the world is considered to be made up of a collection

-72-

System
Relational Model

User

AUTOMATIC PROGRAMMING

User Interface

-

Activity Expert Modules

User Block Diagram of
his Information

System

Block Diagram to DSSL

Translator

Detailed System
Simulation Language

pSSL to DSL Translator

of the world of Module
Business
User Relational
Model of his
Business
Simulator
Job Cost Question
Estimator Answerer
User Interactive Heuristic
Optimizer Optimizer

Constrained Data

Unconstrained Data

Set Language

Set Language

PL/1 Generato

JCL Generator

Figure 2.
Protosystem [

-73-

AUTOMATIC PROGRAMMING

of objects. These objects are divided into subsets, such as

the subset of all objects which are fruit. The subset of all
objects which are fruit is represented by SFRUIT, a predicate
which is true only for objects in this subset by #FRUIT, and a
typical object of this subset by $FRUIT. A subset of SFRUIT
might be SAPPLE. We state this in MAPL as A-K-O (A-K-O APPLE
FRUIT) . A-K-O is read "a kind of." FRUIT and APPLE are referred
to as concepts. Since one concept can be a kind of several
other concepts, the concepts form a lattice under set inclusion.

It is interesting to ask how many concepts a world model
might contain. This can be approached by counting the number
of distinct words in technical questionnaires, books, and case
studies, and by building world models. We guess that interesting
models can be built with less than 19,000 concepts, although
ﬁhe models we have actually built have all contained only a few
undred.

A MAPL world modeler can assign properties to concepts
(actually to the #, %, § manifestations of a concept). For
example, to state that any fruit can have color he would write
(A-R-0 COLOR-OF COLOR FRUIT). This declares that the rela-
tion COLOR-OF takes tuples, the first member of which is a
COLOR and the second member of which is a FRUIT. Suppose that
during problem acquisition the user attempts to state that his
apples are red. Given the above declaration of COLOR-OF, the
system will accept this if RED is a kind of a color and the
user's APPLE is a kind of a fruit.

It is our goal to find standard methods of handling time,
location, characteristics, and other relationships in MAPL, so
that the individual world modeler will not have to work this
out. Figure 3 shows a classification of characteristics as
nominal, ordinal, interval measure, or ratio measure. Values
of nominal characteristics cannot be ordered. One does not
say that red is greater than blue. Values of ordinal character-
istics can be compared, but no unit of measure exists. When the
world modeler defines a new characteristic he should say what
class of characteristics it is a kind of. The system will then
automatically know certain things about it.

MAPL has a number of other features not described here.
For example, any relation or tuple can participate in another
relation or tuple. An example of its use in making deductions
is reported by the Medical Decision Making Group.

C. DEBUGGING MODELS

A key part of programming is the creation of the model of
the problem to be solved and the model of the proposed solution.
Any model will be an approximation of the real situation, and
even if it is consistent within itself we must rely on the user
to evaluate its suitability. The problem of internal consistency
is also, in general, unsolvable within the system. We can, how-
ever, gain confidence that the model is all right by exercising
t; and checking to see if it meets certain expectations set by

e user.

-7‘-

-Gl-

%object ()

%characteristic

distance-unit -
erature-
T3 §

%mile
foot-unit

%tatio-measure

Zmagenta
%8 Jtemperatu “distaice
%bi %avg.- %little [%none %cold %temp.~- 7% 1ong
size Zone %cool meagure “%short
, %a-few Jwarm
-/‘mgimoth %ni- %esveral %hot
Amammoth o %many . L
7“cost~- %distance-
Zseunt sut —measure measure ~MeARULE
All links are %A-K-O
unless indicated.
Figure 3.

Partial Concept Net for Characteristics.

ONIWWWRAO0dd JILVWOLNY

AUTOMATIC PROGRAMMING

Suppose a user creates a model and asks the machine to do
a simulation with it. The user also describes what he expects
the results of the simulation to be. If the actual results
differ from these, they may represent the manifestation of some
bug, or incorrect description or decision, In the model. We
have a program which attempts to locate possible bugs. At pre-
sent it knows about competition for resources, and time se-
quencing problems of the type which occur in business games.

Suppose the user presents the program with the following
tiny model:

"Consider the following model of sales. A sale
is a probabilistic occurence which depends only on
the amount of advertising done. Advertising costs
$3,000 per page and is good for one gquarter. I buy
three pages of advertising per quarter if the money
is available. Sales take place during sales calls
on customers. There is one call per salesman per
quarter: a customer never buys more than one unit.
If a unit is sold, the company records $5,000 in
accounts receivable which is not collected for
another two quarters. At any time, any salesman has
a 5% chance of quitting. 1If a salesman quits, a new
man is hired. After three months of training, this
man becomes a salesman and may start making calls.
Both sa.esmen and trainees are paid $1,000 per
quarter. Trainees also have a 5% chance of quitting
at any :ime."

The user woild input this model into the program with the pro-
gram's model specification language (MSL). In these terms, the
model looks like:

(*ACTIVITY HIRING
(*PREREQUISITES (*PRESENT (1000 CASH)))
(*SCHEDULE (ON QUIT))
(*PRIORITY 2)
(*OUTPUT ' (A TRAINEE))

)
(*ACTIVITY ADVERTISING
(*PREREQUISITES (*PRESENT (3000 CASH)))
(*SCHEDULE 3)
(*TAKES 1)
(*PRIORITY 3)
(*OUTPUT ' (1 PAGE-OF-ADVERTISING))
)
(*ACTIVITY TRAINING
(*PREREQUISITES
(AND)
(*PRESENT (1000 CASH))
(*PRESENT (SOME TRAINEE))
)
)
(*TAKES 3
(*OUTPUT ' (A SALESMAN))
)
(*ACTIVITY SALES-CALL
(*PREREQUISIT®.5
(AND

-76~

AUTOMATIC PROGRAMMING

(*PRESENT (1000 CASH))
(*PRESENT (1 UNIT))
(*PRESENT (SOME SALESMAN))
)
)
(*TAKES 1)
)
(*ACTIVITY A-~-R-MATURATION
(*PREREQUISITES (*PRESENT (5000 A-R)))
(*TAKES 2)
(*OUTPUT ' (5000 CASH))
)
(*EVENT SALE
(*CONDITIONS SALES-PROBABILITY)
(*ACTIVITIES (SALES-CALL)
(*OUTPUT * (5000 A-R))
)

)
(*EVENT QUITTING
(*CONDITIONS (UNIFORM .05))
(*ACTIVITIES (SALES-CALL)
(*CANCEL)
(*REMOVE ' (THAT SALESMAN))

)
(*ACTIVITIES (TRAINING)
(*CANCEL)
(*REMCVE ' (THAT TRAINEE))
)

)

(*FUNCTION SALES-PROBABILITY
(*ARGUMENTS (ALL PAGE-OF-ADVERTISING))
(*RETURN (AD-FUNCTION))

)

(We will not show the exact nature of AD-FUNCTION, as
it is of no importance to the example. Note that A-R
denotes "accounts receivable” throughout the model.)

In MSL a model is described as a collection of ACTIVITIES.
Each ACTIVITY has certain properties. For example, the first
activity above, HIRING, requires $1,000 cash, is éore when a
salesman quits and produces a trainee. In competition for re-
sources it has a priority of 2.

Now suppose the user aives the program the following:

(*SIMULATE 4 1
(130000 CASH)
(50 UNITS)
(DON SALESMAN)
(MARK SALESMAN)
‘STEVE SALESMAN)
(BILL SALESMAN)
(*WANT 6 3ALE)))

which states that a simulation of 4 time periods with the initial

conditicns of $30,000, 50 units, and four salesmen should result
in s8ix items sold. The results of the simulation are shown in

-77-

AUTOMATIC PROGRAMMING

Figure 4. Only 5 units rather than 6 were sold. The program

now attempts to determine why sales were low by setting a goal
of increasing sales one unit in time period 4. This goal will
lead to other subgoals. For each goal and subgoal the program
uses the model and the simulation history to ask two questions.

(1) why didn't you meet this goal before?
If there is no good reason,
(2) How could we do this?

A line of reasoning which might be followed by the program
is indicated by Figure 5. From the model it sees that one way
to increase sales in period 4 is to increase the probability of
a sale on 2ach sales call. This can only be done by increasing
advertising. The normal three pages of advertising wasn't done,
however, because we were short of cash in period 4., We could
have more cash in period 4 if we could generate more accounts
receivable in period 2. To do this, we need more sales in
period 2. We can get more sales either with more salesmen or
more advertising. However, the training period precludes getting
more salesmen by period 2. This leaves us with the possibility
of buying more than 3 pages of advertising in period 2.

We do not claim that this solution should be adopted, but we
feel that it will be useful to present the user with this line of
reasoning. Because it doesn't have all the facts, the program's
conclusions may be entirely inappropriate to the situation, but
the line of reasoning may show the user that he has given the pro-
gram an inadequate model or it may remind him of a facet of the
problem which he ignored. While it may be very difficult to make
a program which is an authority on models, it may be possible to
make one which has interesting comments toc make. There are many
important general concepts, such as feedback, which the program
does not yet understand. There are many models here at M.I.T.
which have been found useful in business situations, and which
can ke used as examples in expanding the program.

D. ENGLISH LANGUAGE INPUT

We feel that English language input will be important both
in allowing us to obtain the knowledge of experts and in supplying
expertise to the general public. We examined a number of the
existing English input routines and found that while many good
ideas had been discovered, no existent program lent itself to
extension as a general purpose routine. We have designed a new
routine and implemented it in full generality for one test
sentence:

"How much did we sell to Sears in '722?"

A description of the program's behavior on this sentence is given
below.

One of the new features of the parser is the use of a case
grammar. The basic tenet of case grammar is that the sentence
consists of a verb and one or more noun phrases (or other sen-
tence elements) each associated with the verb in a particular
relationship. This view is useful in analyzing the sentences:

-78-

AUTG:i ™I PROGRAMMING

UNITS SALES

ON OF SALES
CASH A-R SALESMEN TRAINEES HAND UNITS CALLS
$30,000 $0 4 0 50
$17,000 $10,000 4 0 48 2 4
$5,000 $15,000 3 1 47 1 3
$2,00C $10,000 3 1 46 1 3
$0 $10,000 3 1 45 1 3

Figure 4.

INCREASE SALE 1 IN PERIOD 4

INCREASE SALES-PROB IN PERIOD 4

SCHEDULE MORE ADVERTISING IN PERIOD 4

INCREASE CASH IN PERIOD 4

INCREASE A-R MATURATION IN PERIOD 2

INCREASE SALES 2 IN PERIOD 2

SCHEDULE MORE ADVERTISING IN PERIOD 2 INCREASE SALESMEN IN PERIOD 2

INCREASE HIRING IN PERIOD 2

Figure 5.

-79-

PAGES
OF

AUTOMATIC PROGRAMMING

1) John opened the door with a stick.
2) A stick opened the dcor.
3) The door opened.

In 1) we take John as the agent, a stick as the instrument, and
the door as the object. Sentences 1), 2) and 3) show how a verb
like open takes the agent, object, or instrument as the surface
subject. Our scheme involves listing, for each verb meaning,
what cases it takes and what predicate a noun group or other
construction has to pass in order to be acceptable for that case.
We must also list for each verb meaning what cases a noun group
could be depending on its position in the sentence or the prepo-
sition which precedes it. The verb meanings are arranged in a
MAPL lattice which reduces the redundancy in the specification.

The parser recognizes the following aggregates of words
and phrases:

MAJOR~CLAUSE
SECONDARY-CLAUSE
NOUN-GROUP
ADJECTIVE-GROUP
ADVERB-GROUP
QUESTION-GROUP
PREPOSITION=-GROUP
VERB-GROUP

It builds up a MAPL expression for each phrase. The MAPL ex-
pression corresponding to "How much did we sell to Sears in '72?"
is shown in Figure 6. A finite state transition network has been
written for each phrase. €ach state can have three kinds of arcs
leading out of it: next-unit, try-branches-of (indicated by ===-+
in the word order charts below), and no-success. When building
the MAPL expression corresponding to a phrase, the parser tries
each of the next-unit arcs out of the current state of that
phrase; if none of these applies it looks for the try-branches-of
arc (of which there is at most one) and tries the arcs of the
state indicated by it. If none of these leads to success it looks
for a no-success arc, which indicates under what conditions the
phrase can be complete without further constituents added. Each
arc gives the syntactic type of the word or phrase which must be
found next and a function which must be successfully applied to
the MAPL expression built up so far, and the MAPL expression for
the phrase just found. If the function is successful, it returns
the new partial MAPL expression for the part of the phrase found
so far.

For example, a fragment of the ncun group network currently
implemented looks like:

AUTOMATIC PROGRAMMING

(NOUN=GROUP DET=NUM=ADJ=NOUN=PRONOUN
{WE=YOU ADD-PRONOUN~TO-NG
(NOUN-GROUP NUM=ADJ=NOUN=ALL
(NO-SUCCESS DO-NOTHINGl SUCCEED)))
{TRY-BRANCHES-OF DO-NOTHINGl ORDINAL-SUBTREE))

GO166
AGENT-OF GO166
TYPE-OF PRONOUN-NG
SYNTHETIC-CASE-OF SUBJECTIVE
PERSON-QF FIRST
NUMBER-OF PLURAL
OBJECT-OF
TYPE-OF QUESTION-NG
COUNTABILITY-OF MASS
RELATION=-QUES TIONED-OF COUNT-OF
NUMBER-OF SINGULAR
TIME-OF GO175
TIME-REFERENCE-OF IN GOl66 GUl74
A-K-0 YEAR-1972
T ~QF OBJECT-NG
NUMBER-OF SINGULAR
RECIPIENT-OF GOl172
A~K-0O SEARS
NUMBER OF S1NGULAR
RELATION-QUESTIONED-OF OBJECT-OF
TENSE-OF (PAST)
A-K-O0 SELL-GOODS
PERSON-NUMBER-OF PLURAL
TYPE-OF WH-QUESTION-CLAUSE

Figure 6.

Output of the parser for the sentence
"How much did we ell to Sears in '722"

- -81-

AUTOMATIC PROGRAMMING

The first line says that we have a NOUN-SROUP going and we are
currently looking for something which is a kind of DET=NUM=ADJ=
NOUN=PRONOUN. The second line says that if we in fact find
something which is a kind of WE=YOU then we attempt to apply
the function ADD-PRONOUN-TO-NG to the MAPL form of the noun
group, and the MAPL form of WE=YOU. If this function returns
NIL the parse can't proceed. The only alternative is then given
by the fifth line, which says that if the function DO-NOTHING1
can be applied to the NOUN-GROUP MAPL form with a non-NIL re-
sult we can try the branches of the node named ORDINAL-SUBTREE.
1f ADD-PRONOUN-TO-NG is successful, the third line tells us
that we then have a noun-group going and are looking for a NUM=
ADJ=NOUN=ALL. If we don't find one, the fourth line says that
if DO-NOTHINGl applied to the NOUN-GROUP MAL form is non-NIL,
then that result is the completed noun group, which can then be
added to a superior group or clause.

During the parse, the parser maintains a stack of pairs: a
current state in a phrase and a partial MAPL expression. The
stack is started off with one pair; the first state of MAJOR-
CLAUSE and a null MAPL expression. The parser then looks at the
next word of the input string and takes a number of actions which
are dependent on our view of the structure of English. First, it
checks to see if the word starts a noun idiom or proper noun
expression and builds it if it does. Failing this, it tries to
add the word to the current phrase. Failing this, it checks to
see if the word would begin one of the other phrases. If it will,
it starts that phrase. It then checks to see if this new phrase
could possibly be fitted onto the current one when the new one is
finished. It does this by comparing what we have going in the
new phrase with what we are looking for in the current one. If
the new phrase can yield a constituent we are looking for, it
adds the new phrase to the stack. When a phrase is finished the
parser removes it from the stack and tries to add it to the one
immediately above. If this fails, it checks to see if the one
above can be considered complete without additional constituents
being added. For example, consider:

I rode down the street in the car.
At some point we will in effect have

I rode ~»

down -+

the street -+

in the car.
The parser will try to form

I rode +

-82-

AUTOMATIC PROGRAMMING

down ~*

the street in the car
but the MAPL world will block this. The parser will then form

I rode -+

down the street

in the car.
and then it will form

I rode down the street »

in the car.
and it will then be successful in attaching in the car to the
main clause. In starting a new group the parser must also con-
sider the possibility that it begins a secondary clause. For
example,

we celebrated the day the rain came.
The parser will get

We celebrated -

the day ~
and it will then see that the next word starts another noun
group. A noun group cannot post-modify a noun group, but it
can start a secondary clause. The parser forms

We celebrated -+

the day -~

>

the -

and continues as normal. All parsings are found by taking all
branches at early decision points and the corresponding MAP ex-
pressions generated for each. Complete constituents are saved
so that they are not generated twice by different parses.
Negation, surface-objc:tive-case, and person-number are not used
to stop a phrase untili it is time to add it to the one above.
Such features don't seem to block many false parses. That is,
these features are checked by the functions which combine MAPL
forms rather than being used to describe what we are looking for
and what we have going. As the parser £inds the noun groups of
the clause from left to right it is not always able to assign
them to the proper case immediateiy, therefore it holds them
until enough is known. For example, consider the sentence,

How much did we sell to Sears in '72?

-g83-

AUTOMATIC PROGRAMMING

The parser attempts to move through the sentence putting consti-
tuents aside (but remembering their position) until it finds

the surface object. First it finds "how much®" and remembers
this as the first noun group. Then it finds "did" and remembers
this as a possible auxilliary. Next it finds "we" and remembers
this as the second noun group. Then it finds "sell". It now
knows that "we" is the surface subject and "did sell" is the
verb. Next it finds "to Sears". Since this is a preposition
group it knows there are no surface objects. It now considers
each meaning of "sell". For each meaning it looks up the pos-
sible cases for the surface subject and discovers that "we"
could be either the agent or the object. Currently it does not
attempt to discover that "we”" is Globe Union Battery Company;
but that would not change what follows., It discovers that "we"”
passes both thc object and agent predicates for sell, so it
remembers that these two possibilities remain, and proceeds with
the parse. It finds "to Sears". 1t finds that "to" flags the
recipient for "sell" and that the recipient does not take a
prepositional phrase in fact, but only the object. "Sears" passes
the predicate for recipient and is assigned. The parser finis
"in '72". "In" flags time, which does take the whole preposi-
tional phrase. "In '72" passes the predicate for time and is
stored as

(TIME-REFERENT-OF IN Major clause YEAR-1972).
Now the sentence is finished and "How much” has not been needed

by a dangling preposition. Since it occurs in first position,
"How much" must thus be the object; this makes “"we" the agent.

E. TRANSLATION INTO PL/I

As shown in Figure 2, in Protosystem I, the model of the
solution to a user's problem is expressed in Detailed System
Simulation Language (DSSL). To get an idea of the nature of
this language, consider the A&T Supermarket Micro case shown
schematically in Fiqure 7. Each day stores order from a central
warehouse. The warehouse fills the items from inventory and then
orders items which are in short supply from a supplier. The
supplier fills the orders the next day and the warehouse updates
its inventory. Protosystem has generated PL/I for this example.
An inventory file of 4,000 items is kept at the warehouse. The
quantity of each item on hand at the warehouse, taking into ac-
count receipts from suppliers, is given by

BEGINNING-INVENTORY (DAY, ITEM) =
IF DEFINED (FINAL-INVENTORY (DAY -- 1, ITEM))
AND DEFINED (QUANTITY-RECEIVED (DAY, ITEM))
THEN FINAL-INVENTORY (DAY - 1, ITEM) +
QUANTITY-RECEIVED (DAY, ITEM)

OR IF DEFINED (FINAL-INVENTORY (DAY - 1, ITEM))

-84-

AUTOMATIC PROGRAMMING

(Yesterday's quintity
ordered by warehouse)

Order Filling

Quantity
Received

Store Ordering
Generatiorn

Quantity
Ordered by Store

Generate Time
Timewindow

Defined for some Store

(Yesterday's
final
Inventory)

N2

Store Order
Generation

Quantity Ordered by

Inventory Update Store~Timewindow

Quantity
Ordered by Store
Beginning
Inventory N

Order Al'ocation

Final Inventory

Quantity
shipped by
Store

—

Reorder Calculation

Quantity Ordered by Warehouse

Figure 7,
A&T Micro Case

-85=

AUTOMATIC PROGRAMMING

THEN FINAL-INVENTORY (DAY =- 1, ITEM)
ELSE UNDEFINED

BEGINNING-INVENTORY is to be calculated for each item each
day. As shown in Figure 6, the name of this calculation is
Inventory Update.

BEGINNING-INVENTORY (DAY, ITEM) #nd QUANTITY-ORDERED-BY-
STORE (DAY, STORE, ITEM) are inputs to the Order Allocation
Calculation. This calculation is an aggregate operation on
QUANTITY-ORDERED-BY-STORE because on a given day it must allo-
cate a given item across all stores ordering it. In DSSL all
such aggregate operations are represented by special functions
built into the language. We have currently defined SUBSET-
ALLOCATE, SUBSET-COUNT, SUBSET-MAX, SUBSET-MIN, SUBSET-NUMBER,
and SUBSET-PLUS. 1It is our assumption that most business data
calculations which involve aggregation can be expressed in terms
of a rather small set of such functions.

By way of illustration we will define SUBSET-PLUS before
returning to the allocation of warehouse items. SUBSET-PLUS
is defined by the expression

Output (period, kl kz ki kiﬂ. kn) -E Input (peried, kl ...kn)
k
i

where Input, Output, and ki are given to SUBSET-PLUS as para-
meters,

Our current version of SUBSET-ALLOCATE says that store
orders are filled in any sequence. Each store receives the
amount it ordered unless not enough of the item is remaining,
then it receives none. SUBSET-ALLOCATE takes as inputs the
orders and the beginning inventory and produces as outputs the
quantity shipped and the final inventory. For A&T Micro we
have

Order Allocation

SUBSET-ALLOCATE (
QUANTITY-SHIPPED~-TO-STORE (DAY, STORE, ITEM)
FINAL-INVENTORY (DAY, ITEM)
QUANTITY-ORDERED-BY-STORE (DAY, STORE, ITEM)
BEGINNING-INVENTORY (DAY, ITEM)
ITEM)
After the value of FINAL-INVENTORY has been computed for each

item, Reorder Calculation determines if the warehocuse should

order mcre of the item from the supplier. The amount to be
ordsred is defined by

~86-

AUTOMATIC PROGRAMMING

QUANTITY~ORDERED-BY-WAREHOUSE (DAY, ITEM) =
IF DEFINED (FINAL-INVENTORY (DAY, ITEM))
AND FINAL-INVENTORY (DAY,ITEM) . 100
THEN 1000
ELSE UNDEFINED

Inventory Update, Order Allocation, and Reorder Calculation are
the three calculations which are to be implemented in PL/I on

the warehouse's computer. The other calculations in Figure 6
are needed only to define and describe the input variables
QUANTITY-RECEIVED and QUANTITY-ORDERED-BY-STORE.

As shown in Figure 2, the DSSL is translated into DSL.
Each of the variables is converted into a DSL data set. Tn
this representation, each of the other parameters of the variable
except the period becomes a key and the variable becomes a data

value. For example,
QUANTITY-ORDERED-BY-STORE (DAY, STORE, ITEM)

becomes a data set with fixed length records of the form

data value QUANTITY-ORDERED-BY~STORE
key STORE
key ITEM

In this example, it will not be necessary to consider
the possibility that the values of keys are the output of a
computation. We will define ITEM to take on all values in the
set SET-OF-ITEMS and STORE to take on all values in the set SET-
OF-STORES. The DSSL description will tell us how many elements
each of these sets contains and give a predic:te which is true
only for members of the set,

Suppose there are s elements in the set SET-OF-~STORES and
i elements in the set SET-OF~ITEMS, then there are s rimes i
possible records in the data set QUANTITY-ORDERED-BY~STORE. We
will make the convention that a record is physically p-esent in
a data set only if its data value is defined. It is i.portart
to know the r.umber of records to be expected in a data set on a
given day in order to optimize the PL/I programs for the high
volume operations. To this end, we will define the key predicate
of a data set to be a predicate on the time and the keys of a
data set, which is true if the data set physically contains a
record with those keys at that time. Clearly, the number of re-
cords in a data set can vary with time. (Stores don't have to
place the same number of orders every day.) In Protosystem I,
the design is based only on the time average and maximum number
of records. The key predicate for QUANTITY-ORDERED-BY-STORE muct
be computable from the DSSL description. The appropriate infor-
mation is contained in Store Ordering Generation and Store Order
Generation.

-87-

AUTOMATIC PROGRAMMING

Key predicates of output data sets of a computation are
computed from the inputs and the definition of the computation.
For example, consider Reorder Calculation, as shown in Figure 8.

QUANTITY-ORDERED
FINAL INVENTORY REORDER CALCULATION BY WAREHOUSE
P, (ITEM) P, (ITEM)

Figure 8

Suppose P (ITEM) is found to be just
ITEM ¢ SET-OF-1TEMS
From the definition of Reorder Calculation we have
P (ITEM) = P (ITEM) AND FINAL-INVENTORY
(ITEM) < 100,
Substituting in we get
P (ITEM) = ITEM ¢ SET-OF-ITEMS and
FINAL-INVENTORY (ITEM) < 100.

It is the job of the Question Answerer and Simulator to deter-
mine the time average number of records for which this predicate
is true. The first term is independent of time; there are 4,000
items. Since all items have been defined to have the same behavior,
the average can be found by finding the time average for which
FINAL-INVENTORY (ITEM) < 100 is true for one item and multiplying
by 4,000.

The above discussion should give the reader an idea of the
level of description and the problems being attacked by the DSSL
to DSL Translator, Question Answerer, and Simulator in Proto-
system I. Let us turn to the interactive optimizer and heuristie
optimizer.

Both optimizers play the same role; the interactive optimizer
requires a human to suggest solutions; the heuristie optimizer is
automatic. Only the interactive optimizer is debugged at this
point. The problem faced by the optimizers in the A&T Micro case
is shown schematically in Figure 9.

AUTOMATIC PROGRAMMING AUTOMATIC PROGRAMMING

Inventory Order STS
OR Update BI Allocation @
Reorder
FI QOBS FI Calculation QOBW
Figure 9

Circles represent data sets and rectangles represent computa-
tions.

Optimization involves merging computations and data sets,
insertion of sorts, and assignment of file structure and para-
meters, and access methods. For example, in Figure 9 it would
be possible to combine Inventory Update or Reorder Calculation
into Order Allocation. If Inventory Update is combined with
Order Allocation, data set BI and the associated file reads and
writes can be eliminated. If Reorder Calculation is combined
with Order Allocation a read of data set FI is eliminated, but
FI cannot be eliminated, as it is an input to Inventory Update.
The Order Allocation calculation requires that a running tabula-
tion of the amount of each item remaining be kept while orders
are being allocated to that item. This can either be done with
a table in core containing an entry for each item, or data set
QOBS can be sorted on item. If data set QOBS is sorted on item
and calculation Order Allocation is done in item sequence, then
data set BI can either be sorted on item and accessed sequentially
or accessed randomly.

.

It should be clear that although we allow only three choices
of file organization and a few access methods, that since the
choices at any point partially constrain the adjacent choices the
number of possible designs is combinatorially very large and not
easy to enumerate.

The worth of a given design is found by estimating what it
would cost to run it at the M.I.T. Computation Center IBM 370
installation. The center computes the cost of a run from a
standard formula involving such variables as the amount of CPU
time used, the amount of core used, and the number of secondary
storage accesses made. The amount of core taken by a given run
depends on such facts as how the operating system treats utility
programs. Therefore, a large number of runs were made at that
installation to get data on core requirements, sort times, and
the like from which interpolations can be made for a proposed
PL/1 program or sort.

Once the above constraints have been chosen, PL/I and IBM
Job Control Language can be generated by a process similar to
code generation in a compiler. Thus, the output of the whole
process is a set of PL/I programs for the given application.

-89-

MATHLAB GROUP

A. INTRODUCTION

This year the Mathlab Group has mede significant progress
on several fronts. Most notable hés L en the acceptance of the
MACSYMA system (bugs and all) by « user community at M,I.T. and
around the country. The system has already started to become a
paper generating machine (published papers, that is). Signifi-
cant progress has been made in algorithm analysis and design.
Our new Greatest Common Divisor algorithm is exponentially faster
than existing algorithms in many cases. Additional upgrading of
our hardware and our LISP system has also taken place which has
led to a significant improvement in the response time of the
MACSYMA system. New capabilities (e.g. Laplace Transforms) have
been added to the system and have in turn been critical in cal-
culations which are now in various stages of publication. Our
interaction with the Plasma Group at RLE has been yielding im-
portant results and we expect use of the system by plasma physi-
cists in this country and possibly in Europe (via ARPA's connection
to Norway). The MACSYMA system has also been made operational on
the MULTICS system in the past year.

B. HARDWARE IMPROVEMENTS TO THE MATHLAB PDP-10

The "Mathlab" PDP-10 became operational in February, 1971.
Very early it became clear that 256K of primary memory was in-
sufficient to run more than one MACSYMA user at a time with a
reasonable response time. Another 256K of memory was ordered from
Ampex and 128K of it has been installed by April, 1973. The
effect on swapping behavior of the system was dramatic, as expected.
when the full 512K is installed, we expect five MACSYMAs to run
simultaneously in memory. When additional improvements are made
to our LISP system, this figure should double.

C. IMPROVEMENTS TO MAC-LISP

One of the most interesting improvements to our LISP system
has been one which allows both users and designers to share the
same code and obtain different debugging and run-time behavior.
System designers want to be able to trace any subroutine at any
given time. This is possible if all subroutine calls are run
interpretively. This increases the run-time by a factor of about
four on the average. Users do not wish to trace MACSYMA functions
and thus should not pay this factor of four. We have made all
subroutine calls go indirectly through special pages. One set of
pages contains calls directly to the subroutine, the other set
calls the subroutire linkage routine instead. By switching these
pages in the user's page map we are able to get the performance
desired. This work was done by our LISP development group made
up of Jon White, Guy Steele, and Stavros Macrakis.

A normal MACSYMA version currently requires approximately
155K of memory, of whichk about 85K is shared code. A vexrsion
containing the entire system would require about 225K, of which
135K would be shared. Approximately half of the unshared portion

Preceding page blank ...

MATHLAB GROUP

of each user's space is comprised of list structure which is

used as data by the subroutines. If we could share this data,
then the memory overhead for additional MACSYMA users would de-
crease by a factor of two. We now plan to assign to each page
in the user's map an entry in a table indicating the type of
information in the pages (e.g. pure free storage, binary program,
stack, impure free storage). This will give us some properties
of segments (e.g. dynamic growth of number of pages containing

a certain type of information) and still preserve the ability for
one word to reference another directly. When this scheme is
implemented the system will not only be able to share more
information, but the arrangement of spaces for different infor-
mation will change dynamically. Garbage collection and type
testing times will also decrease sygnificantly.

D. ARPA NETWORK UTILIZATION

The Mathlab Machine went on the network in May, 1972. Since
then we have built a moderate user community on the network. Our
experience nhas been that once a user is able to solve a significant
problem with the system then he is usually “hooked" and can be
expected to use the system continually. A recent study indicates
that in a period of several weeks 9% of all console hours charged
to users came from network users, and that significant time was
chargeable to users at 30 nodes along the network. Most of this
network time is probably spent in using MACSYMA. Locally the
machine is used quite heavily by the Medical Diagnosis and Auto-
matic Programming groups as well as by the Mathlab Group and
MACSYMA users in the M.I.T. community.

We are aware of significant projects at several sites. At
NASA-Langley there is a project which uses MACSYMA to generate a
finite element scheme for sclving partial differential equations.
FORTRAN subroutines are generated and fed to a CDC 6600 for the
numerical computation [1). Other computations in quantum electro-
dynamics are run there as well. At JPI. MACSYMA is used by the
numerical analysis group as an extension of their service to the
JPL community. A Ph.D thesis in celestial astronomy is being
completed, in part, through computations using MACSYMA. At Cal
Tech calculations required in theoretical analyses of spline
functions are being done and larger projects are under considera-
tion. At the Stevens Institute of Technology calculations in
plasma physics are being made., There is additional significant
utilization of the system from the University of California at
Santa Barbara ([13], NOAA, and from within ARPA itself, but we
are not familiar with the details of all of these applications.
There is some discussion about utilization of the system from
several plasma physics centers in Europe through the connection
in Norway. These discussions are at a preliminary stage, however.

E. NEW AND IMPROVED SUBSYSTEMS IN MACSYMA

In the past year several new and some highly modified sub-
systems were introduced into the system and often led to success
in calculations which were not possible earlier.

Richard Bogen completed Laplace Transform and Inverse La-
place Transform routines. We soon had an application in gas

-92-

MATHLAB GROUP

chromotography from a professor at the Harvard School of Public
Health which depended on this capability. The result apparently
indicates the possibility of designing very general devices in
this area.

Richard Zippel has completed a subsystem for manipulation
formal power series with both negative and rational exponents.
This system which is more general than similar work in other
groups [B8) adds an entirely new data representation to MACSYMA.
It vindicates our general design decision to allow for a variety
of data representations rather than depending on a single repre-
sentation as is the case in most other systems. The subsystem
has been used in many calculations.

Michael Genesereth has completed a translator from MACSYMA's
top level language to LISP. There have been experiments by
Richard Fateman which tied this translator to our recent LISP
compiler and which show that for certain purely numerical cal-
culations compiled MACSYMA routines run 2% faster than the
corresponding FORTRAN programs rompiled with the standard DEC
compiler [7]. The reason for tais discrepancy is due to the
inefficiency in FORTRAN subroutine calls. This is ironic since
LISP subroutine calls are more general because they allow for
recursion and Standard FORTRAN does not.

David Yun has completed a version of our new EZ GCD algorithm
which is also discussed below. This algorithm has been compared
with the Modular GCD algorithm developed by Brown, Ccllins and
Knuth [121. As we had expected, the Modular algorithm required
time which was an exponential function of its input size and the
EZ algorithm only needed time which was a linear function of the
input size on a class of problems. While the EZ algorithm is not
exponentially better than previous algorithms for all problems,
its advantage is sufficiently great to make those algorithms ob-
solete. In particular, certain calculations, especially polynomial
factorizations, we had previously given up on have been success-
fully completed with the Ez GCD algorithm.

David Yun also has completed a subsystem for solving a set
of polynomial equations [14]. This program uses a resultant
algorithm to successively eliminate variables. It tries to keep
the degrees of the resultants low by factoring them. A final
univariate polynomial is solved, using infinite precisions arith-
metic if necessary, to obtain its real roots to any desired degree
of accuracy. The system can yield a surface of solutions when the
original set of equations is undetermined. The system has been
used to ciheck ~alculations performed by Professor Rabin and Dr.
Winograd of IAM,

Richard Bonneau of Project MAC's Theory Group has worked with
Richard Fateman on Fast Fourier Transform algorithms for polynomial
multiplications [6]. 1In certain cases when the polynomials are
fairly dense, FFT techniques are more efficient than any other
means for performing polynomial exponentiation as well as other
processes. Tou our knowledge this is the first practical use of
FFT techniques in algebraic manipulation.

-93-

MATHLAB GROUP

F. WORK IN PROGRESS

Dr. Paul Wang has been extending his factorization system
to factor polynomials over algebraic number fields. The mathe-~
matics (in particular, algebraic number theory tecliniques) has
been developed by Elwyn Berlekamp, Hans Zassenhaus, and in our
group by Linda Rothschild and by Peter Weinberger from the Uni-
versity of Michigan, who acted as a consultant. This system
requires an extension of our rational function package to alge-
braic numbers, Barry Trager has been implementing that extension.

Trager has also been implementing an extension to our ra-
tional function package to allow it to handle polynomials in
factored form. When this is completed we shall be able to avoid
excessive blow-up of expressions in many situations.

Dr. Vera Pless has been considering implementing a system
for calculations in group theory. This would require translating
code in systems under development in Australia and Germany. She
plans to extend such systems to handle different types of calcula-
tions in group theory, combinatorics, Lie groups, etc.

Joel Moses has been extending his implementations of the
Risch integration algorithm [11]. The exponential case is almost
completed now and work is proceeding on tools for handling the
algebraic case. Jayant Shah of Northeastern has acted as a con-
sultant on the algorithms from algebraic geometry required in
this case. With Dr. Ed Ng of JPL, Moses has been analyzing the
possibility of extending the Risch algorithm to a class of special
functions, including the error function, the Incomplete Gamma
function and the elliptic function.

Michael Genesereth has been implementing an extendable parser
similar to that orginally devised by Vaughn Pratt. Preliminary
experiments indicate that it is four times faster than our
existing Floyd precedence parser. Many suggestions for extending
our input syntax have been made and are being implemented.

Richard Bogen has written several versions of a MACSYMA
Manual. The April, 1973 version is over 100 pages long, and is
fairly complete [10]. Comments from users are likely to yield
better versions of the manual and its accompanying Primer.

G. THE HENSEL LEMMA IN POLYNOMIAL MANIPULATION

Our major theoretical work has been in the design of the
EZ GCD algorithm. The Hensel lemma used in this algorithm for
extending the result from the univariate to multivariate case
shows promise of applying in many other problems. David Yun
has already used it to obtain efficient algorithms for square-
free-factorizations and content calculations. He has also shown
that a Hensel-like division algorithm is more efficient than the
usual division algorithm on large polynomials. There is promise
that this type of interpolation will yield a very efficient re-
sultant algorithm., We believe thav the use of the Hensel lemma
is a breakthrough in this field whizh should lead to a class of
algorithms which are the best possiLle ones or very close to the
best for practically sized problems.

-94-

10.

11.

12.

13.

MATHLAB GROUP

REFERENCES

Anderson, C.M., "Use of Symbolic Manipulations in the
Development of Two-Dimensional Finite Elements", Book of
Ahstracts - SIAM 1973 National Meeting, Hampton, Virginia
(June 1973).

Bers, A., Kulp, J., ard Watson, D. C., "Analytic Description
of Nonlinear Wave Interactions on a Computer", Bull. Amer.
Phys. Soc., Series II, 17, No. 11, 991 (1972).

Bers, A., Kulp, J., and Watson, D. C., M.I.T.-R.L.E. Quarterly
Progress Report No. 108, p. 167 (1973).

Bers, A., Kulp, J., and wWatson, D. C., "Symbolic Computer
Calculations of Plasma Wave Interactions", Book of Abstracts
- International Congress on Waves and Instabilities, Insti-
tute of Theoretical Physics, Innsbruck, Austria, p. 13,
(April 1973).

Bers, A., Karney, C. F. F., and Kulp, J., "Parametric Down
Conversion from Lower-Hybrid Frequency Waves", Book of
Abstracts - International Congress on Waves and Instability,
Institute of Theoretical Physics, Innsbruck, Austria, p. 144
(April 1973).

Bonneau, Richard J., "A Class of Finite Computation Struc-
tures Supporting The Fast Fourier Transform", Book of
Abstracts - SIAM 1973 National Meeting, Hampton, Virginia
(June 1973).

Fateman, R. J., "Reply to an Editorial”, SIGSAM Bulletin
25, March 1973, pp. 9-11.

Johnson, S. C., and Brown, W. S., "Truncated Power Series
in ALTRAN", Book of Abstracts - SIAM 1973 National Meeting,
Hampton, Virginia (June 1973).

Kulp, J. L., Bers, A., and Moses, J., "New Capabilitics for
Symbolic Computation in Plasma Physics", Book of Abstracts
- Sixth Conference on Numerical Simulation of Plasmas,
Lawrence Berkeley Laboratory, Berkeley, July 1973.

MACSYMA User's Manual, Version Four, April 1973, Project
MAC, M.I.T.

Moses, J., "The Exponential Case of the Risch Integration
Algorithm”, (Invited Lecture), Book of Abstracts - SIAM
1973 National Meeting, Hampton, Virginia (June 1973).

Moses, J., and Yun, D. Y. Y., "The EZ GCD Algorithm", (to
appear) Proceedings 1973 National ACM Conference, Atlanta,
Georgia, August 1973.

Pickens, John R., ARPA Network Information Center, Doc.
No. 16818, RFC No. 519, pp. 2-3.

-95-

MATHLAB GROUP

REFERENCES (CON'T)

14. Yun, David Y. Y., "On Algorithms for Solving Systems of
Polynomial Equations”, Book of Abstracts - SIAM 1973 Na-
tional Meeting, Hampton, Virginia (June 1973).

PLANNER

7. IUTRODUCTION

Knowledge Based Programming is programming in an
environment which has substantial knowledge of the semantic
domain for which the programs are being written and of the
purposes that tie programs are supposed to satisfy. Actors
are a semantic concept in which no agent is ever allowed to
treat another as an object; instead a polite request must be
extended to accomplish what the agent desires. Using actors
the PLANNER Project is constructing a Programming Apprentice
to make it easier for expert programmeFE%&TEE'E%bW%%HEE—ESEed
programming.

In the last year we have conceived and made a preliminary
implementation of a modular ACTOR architecture and
definitional method that is conceptually based on a single
kind of object: actors [or, if you will, virtual processors,
activations, or streams]. The architec*turc makes no
presuppositions about the representation of primitive data
structures and control structures. Such structures can be
programmed, micro-coded, or hard wired in a uniform modular
fashion. In fact it is impossible to determine whether a
given actor is "really® represented as a list, a vector, a
hash table, a function, or a process. The architecture will
efficiently run the coming generation of PLANNER-like
languages including those requiring a high degree of
parallelism., The efficiency is gained without loss of
programming generality because it only makes certain actors
more efficient; it does not change their behavioral
characteristics. The arciaitecture is general with respect to
control structure and does not have or need goto, interrupt,
or semaphore primitives, The formalism achieves the goals
that the disallowed constructs are intended to achieve by
other more structured methods.

A satisfactory theory for the representation of knowledge
should have one unified totally integrated formalism and
semantics, For example we should not have one formalism and
semantics for expressing declaratives and a separate formalism
and semantics for expressing procedures. For some years now
we have been working to achieve this goal. The record of our
progress is published in the Proceedings of the International
Joint Conferences on Artificial Intelligence beginning with
the first conference in 1969. In the course of this research
we have developed the Thesis of Procedural Embedding of
Knowledge which is that "Rnowledge of a domain is iIntrinsic-
ally bound up with the E_gsgggég% for ng use.” An important
corcllary is that the fundamenta technique of artificial
intelligence is Automatic Programming and Procedural
Knowledge Base Construction.

*Programs should not only work,
but they should appear to work as well.”

PDP-1X Dogma

The PLANNER project is continuing research in natural and
effective means for embedding knowledge in procedures, In the
course of this work we have succeeded in unifying the

-97-

PLANNER

formalism around one fundamental concept: the ACTOR.
Intuitively, an ACTOR is a potential performer which can play
a role on cue. Ve use the ACTOR metaphor to emphasize the
inscparability of control and data flow in our model. The
ACTOR concept subsumes both the concept of data and the
conccpt of instruction.” The behavior of data structures,
functions, semaphores, monitors, ports, descriptions, Quillian
nets, logical formulae, numbers, identifiers, grammars,
demons, processes, contexts, and data bases can all Le shown
to be special cases of the behavior of actors. All of the
above are objects with certain useful modes of behavior. Our
formalism shows how all of these modes of behavior can be
defined in terms of one kind of behavior: ACTOR TRANSMISSION.
An actor is always invoked uniformly in exactly the same way
regardless of whether it behaves as a recursive function, data
structure, or process.

B. INTRINSIC COMPUTATION

We are approaching the problem of the representation of
knowledge from a behavioral [procedural] as opposed to an
axiomatic approach. Our view is that objects are defined by
their actions rather than by axiomatizing the properties of
the operations that can be performed on them.

"Ask not what you can do to some actor;
but what the actor can [will?] do for you."

Alan Kay has called this the INTRINSIC as opposed to the
EXTRINSIC approach to defining objects. Our model follows the
following two fundamental principles of organizing behavior:

)

Control flow and data flow are inseparable.

Computation should be done intrinsically instead of
extrinsically i.e. "Every actor has the right to act
for itself."

Although the fundamental principles are very general they rave
definite concrete consequences. For example they rule out the
goto construct on the grounds that the goto violates the
inseparability of control and data flow since the goto does
not allow a message to be passed to the place where control is
going., Also the goto defines a semantic object ([the code
following the tag]l which is not properly syntactically
delimited thus possibly leading to programs which are not
properly syntactically nested. Similarly the classical
interrupt mechanism of present day machines violates the
principle of intrinsic computation since it wrenches control
away from whatever instruction is running when the interrupt
strikes,

"It is vain to multiply Entities beyond need."
William of Occam

“Monotheism is the Answer"”

PLANNER

‘the unification and simplification of thc formalisms for
the procedural embedding of hnowledge has a great many
benefits for us:

FOUUDATIONS: The concept puts procedural semantics [the
theory of how things operate] on a firmer basis. It will now
be possible to do cleaner theoreticai studies of the relation
between procedural semantics and set-theoretic semantics such
as model theories of the quantificational calculus and the
lambda calculus.

LOGICAL CALCULI: A procedural semantics is Jdeveloped for tne
quantificational calculi. The logical constants FOR-ALL,
THERE-EXISTS, AND, OR, NOT, and IMPLIES are defined as actors,

PLANS are actors invoked by WORLC DIRECTED INVOCATION
Tinvocation on the basis of a fragment of a micro-world] to
try to achieve some goal, PROCEDURAL DATA BASES [WORLDS] are
actors which organize a set of actors for efficient retrieval.
There are three primitive operations for data bases: PUT,
GET, and ERASE which are done on the basis of world directed
invocation which the worlds do at the behest of the plans that
they serve.

KNOWLEDGE BASED PROGRAMMING is programming in an environment
which has a substantial knowledge base in the application area
for which the programs are intended. The actor formalism aids
knowledge based programming in the following ways:

PROCEDURAL EMBEDDING of KNOWLEDGE
TRACING BEHAVIORAL DEPENDENCIES

SUBSTANTIATING that ACTORS SATISFY their INTENTIONS

INTENTIONS: Furthermore the confirmation of properties of
procedures is made easier and more uniform. Lvery actor has
an INTENTION which checks that the prerequisites and the
context of the actor being sent the message are satisfied.

The intention is the CONTRACT that the actor has with the
outside world. liow an actor fulfills its contract is its own
business. By a SIMPLE BUG we mean an actor which does not
gatisfy its intention. We would like to eliminate simple
debugging of actors by the META-EVALUATION of actors to show
that they satisfy their intentions., The rules of deduction to
establish that actors satisfy their intentions essentially
take the form of a high level interpreter for abstractly
evaluating the program in the context of its intentions. This
process (called META-EVALUATION] can be justified by a form of
induction. Meta-evaluation captures a large part of the
mechanism that a programmer gces thru when he reads a piece of
code to determine that it will satisfy its intended purpose.
In general in order to substantiate a property of the behavior
of an actor system some form of induction will be needed. At
present, actor induction for an actor configuration with
audience E can be tentatively described in the following
manner:

-99-

PLANNER

l. The actors in the audience E satisfy the intentions
of the actors to which they send messages

and

2, For each actor A [including those created in the
course of a computation] the intention of A is satigfied
=> the intentions for all actors sent messages by A are
satisfied

Therefore

The intentions of all actions caused by E are satisfied
(i.e. the system behaves correctly)

Computational induction (Manna), structural induction
[Burstall], and Peanc induction are all special cases of
ACTOR induction. Actor based intentions have the following
advantages over previous formalisms that have been proposed:

The intention is decoupled from the actors it describes.

We can partially substantiate facts about the behavior of
actars without giving a complete formal proof. An actor
who is asked can if it chooses vouch for some
circumstance being the case. At some later time if we
require further justification, then we can re—-examine the
situation.

Intentions of concurrent actions are more easily
disentangled.

We can more elegantly write intentions for dialogues
between actors.

The intentions are written in the same formalism as the
procedures they describe. Thus infentions can have
intentions. Furthermore intentions for side effects are
expressible without recourse to the notion of a global
state. The extent to which intentions are checked at
execution time as opposed to being verified once and for
all (making the execution time check superfluous) becomes
at least partially an economic decision. Sometimes {as
in type checking] it is cheaper to use an efficient
runtime check providing that the possibility of a run
time fault is tolerable.

Because protection is an intrinsic property of actors, we
hope to be able to deal wlth protection issues in the
same straightforward manner as more conventional
intentions,

Intentions of data structures are handled by the same
machinery as for all other actors.

The flow chart inductive assertion method of Floyd, the
axiomatic rules for PASCAL of Hoare, and their extension

=100~

PLANNER

to SIMULA~€7 style processes by Clint are all special
cases of meta-evaluation.

COMPARATIVE SCHLMATOLOSY: The theory cf comparative power of
control structures is extended and unified., The following
hierarchy of control structures ca.a be explicatud by

incrementally increasing the power of the actor tva. smission
primitive,

iterative-->recursive-->hacktrack-->determinate-->universal

EDUCATION: The mode: is sufficiently natural and simple that
it can be made the conceptial basis of the mocel of
computation for students, In particular it can be used as the
conceptual mod21 for a generalization of Seymour Pap-rt's
"little nan" model of LOGO. Tae model becomes a cooperating
society of "little men" each of whom can address others with
whom it is anquaintel and politely request that some task be
performed.

LEARNING AND MODULARITY: Actors also enable us to ceach
computers more eaci.y Lecause they make it possible to
incrementally add knowledge to procedures witnout having to
rewrite all the knowledge which the computer already
possesses. Incremental extensions can be incorporated and
interfaced in a natuval flexible manner. Protocol abstraction
[abstracting general procelures from the protocols of their
execution on particuiar cases: Hewitt 1969, 1971; Hart,
Nilsson, and Filkes 1972; Sussman 1972] can be generalized to
actors so that prccedures with an arbitrary contrcl structure
can be abstracted.

EXTENDABILITY: The model provides for only one extension
mechanism: creating new actors. However, this mechanism is
sufficient to obtain any semantic extension that might ke
desired.

PRIVACY AND PROTECTION: Actors enable us to define effective
and efficient protection schemes. Ordinary protection falls
out as an efficient intrinsic property of the model. The
protection is based on the concept of "use®™, Actors can Lbe
freely passed out since they will work only for actors which
have the authority to use them. Mutually suspicious
"memoryless™ subsystems are easily and efficiently
implemented. ACTORS are at least as powerful a protection
mecharism as domains [Schroeder, Need:am, etc.), access
control lists [MULTICS], objects (Wulf 1972] a:d capabilities
[Dennis, Plummer, Lampson]. Because actors are locally
computationally universal and cannot be coerced there is
reason to believe that they are a universal orotection
mechanism in the sense that any other protection mcchanisn can
De efficiently cdefined using actors. The most important
issues ir. privacy and prctection that remain unsolved are
those involving intent and trust. Here the concept of
justification plays an important role, A protecied subsystem
%ﬁat provides an answer should be able to justify that the
answer is correct. We are currently considering ways ja which
our model can be further developed to address this problem.

-101-

PLANNER

SYNCHRONIZATION: Serializers provide at least as powerful a
synchronization mechanism as semaphores with no busy waiting
and guaranteed first in first out discipline on each resource.
A synchronization actor is easier to use and substantiate than
a semaphore [Dijkstra 1971) since they are directly tied to
the control-data flow. Also it Provides more protection
because no activator [agent process] can get thru the
serializer until the current quard for the serializer is given
the go ahead and a new guard is provided for each activator
that goes thru the serializer,

SIMULTANEOUS GOALS: The synchronization problem is actually a
special case of the simultaneous goal problem. Eacn resource
which is seized is the achievement and maintenance of one of a
number of simultaneous goals. Recently Sussman has extended
the previous theory of goal protection by making the
Protection guardians into a list of pPredicates which must he
evaluated every time aaything changes, We have generalized
protection in our model by endowing each actor with a
scheduler and an intention. te thus retain the advantaqes of
local intentional semantics. A scheduler actor allows us to
progran LXCUSES for violation in case of need and to allow
WEGOTIATION and re-negotiation between the actor which seeks

0 Seizs another and its scheduler. Richzrc Waldinger has
pointed out tnat the task of sorting rhrea nuibers is a very
elegant sinple example illustrating the utility of
incorporating these kinds of excuses for violating protection.

RESOURCE ALLOCATION: Each actior has a banker who can keep
track of the resources used by the actors that are financed by
the banker.

STRUCTURING: The actor point of view raises some interesting
questions concerring the structure of Programming.

STRUCTUREN PROGRAMS: We maintain that actor
communication is well-structured, Having no goto,
interrupt, semplore, or other constructs, they do not
violate “"the letter of the law". 3ome readers will
probably feel that some actors exhibit "undisciplined”
control flow. These distinctions can be formalized
through the mathematical discipline of comparative
schematology [Patterson and Hewitt].

. STRUCTURED PROGRAMMING: Some authors have advocated top
own programming. We find that our own pProgramming style
can be more accurately described as "middle out®, we
typically start with specifications for a large task
which we would like to program. We refine these
specificationa attempting to create a program as rapidly
as possible. This initial attempt to meet the
specifications has the effect of causing us to change the
specificatons in two ways:

l: More specifications [features which we

originally did not realize are important] are added
to the definition of the task.

-102-

PLANNER

2: 'Tiuc specifications are gdenera.lseud, specialized,
and otherwise combined to produce a task that is
easier to implement and more suited to our real
needs.

IMPLEMENTATION: Actors provide a very flexible implementation
Tanquage. 1In fact we are carrying out the implementation
entirely in the formalism itself. By so doing we obtain an
implementation that is efficient and has an effective model of
itself. The efficiency is gained by not having to incur the
interpretive overnead of embedding the implementation in some
other formalism. The model enables the formalism to answer
questions about itself and to draw conclusions as to the
impact of proposed changes in the implementation,

ARCHITECTURE: Actors can be made the basis of the
architecture of a computer which means that all the benefits
listed above can be enforced and made efficient. Programs
written for the machine are guaranteed to be syntactically
properly nested. The basic unit of execution on an actor
machine is sending a message much in the same way tiaat the
basic unit of execution on present day machines is an
instruction, On a current generation machine in order to do
an addition an add instruction must be executed; so on an
actor machine a hardware actor must be sent the operands to be
added. There are no goto, semaphore, interrupt, or other
instructions on an ACTOR machine. An ACTOR machine can be
built using the current hardware technology tnat is
competitive with current generation machines.

"llow! Now!" cried the Queen.
"raster! Faster!®
Lewis Carroll

Current developments in hardware technology are making it
economically attractive tc run many physical processors in
parallel. This leads to a "swarm of bees" style of
programming. The actor formalism provides o coherent method
for organizing and controlling all these processors. One way
to build an ACTOR machine is to put each actor on a chip and
build a decoding network so that each actor chip can address
all the others. 1In certain applications parallel processing
can greatly speed up the processing. For example with
sufficient parallelism, garbage collection can be done in a
time which is proportional to the logarithm of the storage
collected (instead of a time proportional to the amount of
storage collected which is the best that a serial processor
can do). Also the architecture looks very promising for
parallel processing in the lower levels of computer audio and
visual processing.

"2ll the world's a stage,

And all the men and women merely actors,
They have their exits and their entrances;
And one man in his time plays many parts.”

-103-

PLANNER

"If it waddles like a duck, quacks like a duck, and
otherwise bchaves like a duck; then you can't tell that it
isn't a duck."

C. ADDING AND REORGANIZING RNOWLEDGE

Our aim is to build a firm procedural foundation for
problem-solving. The foundation attempts to be a matrix in
which real world problem solving knowledge can be efficiently
and naturally embedded. In short the problem is to “get the
knowledge to where the action is." We envisage knowledge
being embedded in a set of knowledge boxes with interfaces
between the boxes. In constructing models we need the ability
to embed more knowledge in the model without having to totally
rewrite it. Certain kinds of additions can be easily
encompassed by declarative formalisms such as the
quantificational calculus by simply adding more axioms.
Imperative formalisms such as actors do not automatically
extend so easily. However, we are implementing mechanisms
that allow a great deal of flexibilty in adding new procedural
knowledge, The mechanisms attempt to provide the following
abilitiesa:

PROCECVRAL EMBEDDING: They provide the means by which
knowledge can easily and naturally be embedded in
processaes so that it will be used as intended.

CONSERVATIVE EXTENSION: They enable new knowledge boxes
to be added and interfaced without rewriting all the
previous knowledge.

MODULAR CONNECTIVITY: They make it possible to
reorganize the interfaces between knowledge boxes.

MODULAR EgUIVﬁLENCE: They guarantee that any box can be
replaced by one which satisfies the previous interfaces.

Actors must provide interfaces so that the binding of
interfaces between boxes can be controlled by knowledge of the
domain of the problem. The right kind of interface promotes
modularity because the procedures on the other side of the
interface are not affected so long as the conventions of the
interface are not changed. These interfaces aid in debugging
since traps and checkpoints are conveniently placed thers.
More generally, formal conditions can be stated for the
interfaces and confirmed once and for all.

D. UNIFICATION

We claim that there is a common intellectual core to the
following (now somewhat isolated) fields that can be
characterized and investigated:

digital circuit designers

data base designers

computer architecture designers
programming language designers

=104~

PLANNER

computer system architects

"Our primary thesis is that there can and must
exist a single language for software engineering which is
usable at all stages of design from the initial
conception through to the final stage in which the last
bit is solidly in place on some hardware computing
systen,”

Doug Ross

The time has come for the unification and integration of
the facilities provided by the above designers into an
intellectually coherent manageable whole. Current systems
which separate the following intellectual capabilities witn
arbitrary boundaries are now obsoclete.

"Know thyself".

We intend that our system should have a useful working
knowledge of itself. That is, it should be able to answer
reasonable questions about itself and be able to trace the
impIications of proposed changes in itself.

"We base ourselves on the idea that in order for a program
to be capable of lecarning something it must first be
capable of being told it. 1In fact, in the early versions
we shall concentrate entircely on this point and attempt to
achieve a system which can be told to make a specific
improvement in its behavior with no more knowledge of its
internal structure or previous knowledge than is required
in order to instruct a human."

John McCarthy 1958

Representing in a usable way the knowledge about how a
problem solver works is the first step towards teaching it how
to do new things instead of always telling it how to do them
at a very low level. Also it is the only way in which the
problem solver can have anything but the most superficial
understanding of its own hehavior. The implementation of
actors on a conventional computer is a relatively large
complex useful program which is not a toy. The implementation
must adapt itself to a relatively unfavorable environment, It
illustrates the techniques and difficulties of large software
systems. Creating a model of itself should aid in showing how
to create useful models of other large knowlege based programs
since the implemertation addresses a large number of difficult
semantic issues., We have a number of experts on the domain
that are very interested in formalizing and extending their
knowledge. These experts are good programmers and have the
time, motivation, and ability to embed their knowledge and
intentions in the formalism.

"The road to hell is paved with good intentions,*

Once the experts put in some of their intentions they find
that they have to put in a great deal more to convince the

~105-

PLANNER

auditor of the consistency of their intentions and procedures.
In this way we hope to make explicit all the behavioral
assumptions that our implementation is relying upon. The
Jomaln 1s closed in the sense that the questions that can
reasonably be asked do not lead to a vast body of other
knowledge which would have to be formalized as well. The
domain is limited in that it is possible to start with a
small superficial model of actors and build up incrementally.
Any advance is immediately useful in aiding and moti-

vating future advances. There is no hidden knowledge as

the formalism is being entirely implemented in itself. The
task is not complicated Dy unnecessary bad software,
engineering practices such as the use of gotos, interrupts, or
semaphores.

E. HIERARCHIES

The model provides for the following orthogoral
hieraxchies:

SCHEDULING: Zvery actor has a scheduler which iletermines when

e actor actually acts after it is sent a message., The
scheduler handles problems of =ynchronization. Another job of
the scheduler [Rulifson] is to try to cause actors to act in
an order such that their intentions will be satisficd.

INTENTIONS: Every actor has an intention which makes certain

a i@ prerequisites and context of the actor being sent the
message are satisfied. Intentions provide a certain amount of
redvndancy in the specification of what is supposed to happen,

MONITORING: Every actor can have monitors which look over each
message sent to the actor.

RESOURCE MANAGEMENT: Every actor has a banker which monitors
the use of space and time.

Hote that eve actor has all of the above abilities and
that each is done v*a an actor!

"A slow sort of country!” said the Queen.
"Now, here, you see, it takes all the running you
can do, to keep in the sams place. If you want to
Jet somewhere else, you must run at least twice as
fast as thati"
Lewis Carroll

The previous sentemce may worry the reader a bit as
she (he] might envisage an infinite chain of actions [such as
banking] tc be necessary in order to get anything done. We
short circuit this by only requiring that it appear that each
of the above activities is done each time an ac§5r is sent a
messaqge.

-106-

PLANNER

"There's no use trying," she said: “one
caa't believe impossible things.”

"I daresay you haven't hau mucii practice,"
said the Queen. "When I was you age, I always did
il for half-an-hour a day. Why, sometimes I've
believed as many as =ix impossible thiugs bzfore
breakfast,”

Lewis Carroll

Cach of the activities iz locally defined and executed at
the point of irnvocation, ™his allows the maximum possible
Cegree of parallelism. Our model contrasts strougly wit.
excringic juantificational caiculus models which are forced
into global noneffectiva statements in ordasr to characterize
the semantics.

"Global siate censidered harmful."

We consider language definition techniques [such as
those used with the Vienna Definition language] that require
the gsemantics be defined in terms of the global computational
state to be harmful. Formal penalties [such as the frame
problem and the definition of simultaneity] must be paid even
if the definition only effectively modifies local parts of the
state. Local intrinsic models are better suited for our
purposes.

F. SYNTACTIC SUGAR

"what's the good of Mercator's North Poles and
Equators, .
Tropics, Zones and Meridian Lines?"
So the Bellman would cry: and the crew would reply
“They are merely conventional signs!"

Lewis Carroll

Thus far in our discussion we have discussed the semantic
issues intuitively but vaguely. We would now like to proceed
with more precision. Unfortunately in order to do this it
seams necessary to introduce a formal language. The precise
nature of this language is relatively unimportant so long as
it is capable of expressing the semantic meanings we wish to
convey.

"Use throw away implementations."
Alan Kay

"But make each one good enough to tell you what you
need to know to make the nextl*®
Tony Hoare
For some yecars we have been constructing a series of
languages to express our evolving understanding of the above
semantic issues. The latest of these is called PLANNER-71.

*"Is it garbage yet?"

-107-

PLANNER

Meta-syntactic variables will be underlined. We shall
assume that the reader is familiar with advanced pattern
matching languages such as SNOBOL4, CONVERT, QA4, and PLANNER-
71.

Consider the problem of adding 2 to x where x denotes 3
We will have an actor 2 which given + and x will send us
back the sum. It may seem somewhat strange to have 2 as an
actor but this is the point of view taken by Alonzo Church in
his paper on the lambda calculus and some string processing
interpretive languages operate in this way. Also the SMALL
TALK language of Alan Kay has taken up this view and shown how
it can be used to systematize type coercions. We will denote
sending 2 the + and x by (2 + x). We want to send the actor 2
only one message in order to accomplish the addition. So we
shall agree that (2 + x) really means (%2 [+ x])%) where [+ x]
is a tuple whose first element is + and whose second element
is x. The actor 2 will need to be able to convert x into its
denotation 3 so we shall need to send it an environment E with
x=3 to tell it how to do so. Thus the sum can be further
analyzed to be

(=> ($eval =E)
(882
(#by-expression
[+ x]

(#environment B))88)).

Reflecting on the message sent 2, we realize that the actor 2
needs to be told a continuation C to send the answer when it
finishes and so we agree that the sum can be further analyzed
as

(=>>> (#eval =E (#continuation =C))

(ss82
(#transmission
(#$by-expression
(+ x)
E)

(§continuation C))8a8))

At this point we shall not carry our analysis of the sum any
further but instead shall reflect on what we have done. We
shall use (sl 82 ... sn] to cenote the finite sequence sl, s2,
«e. BN, A Sequence s 1s an actor where (s i) is element i of
the sequence s. For example ([a (2 + 3) B172) will send
"back® 5. We will allow the possibility that the expressions
enclosed between "[”" and "]" may be evaluated concurrently.
We use " (" and ")" to denote the simultaneous synchronous
transmission of a sequence of messages so that (Al A2 ... An)
will be defined to be (S8Al-[A2 ... An]%). The sequence
expression [8al a2 ... an¥] (read as "al then a2 ... finally
send back an"J will be svaluated by evaluating al, a2, ...,
and an in sequence and then sending back {"returning™] the
value of an as the message.

1dentifiers can be created by the prefix operator =. For
example if the pattern =x is matched with v, then a new
identifier is created and bound to ¥.

-108-

PLANNER

"But 'glory' doesn't mean 'a nice
knock-down argument,'® Alice objected.

*When I use a word," Humpty Dumpty said, in
rather a scornful tone, "it means just what I choose
it to mean--neither more¢ nor less.®

*The question is,"™ said Alice, “wuethner you
can make words mean so many different things."

*The guestion is," said Humpty Dumpty,
"which is to be master-~that's all,"

Lewis Carroll

Humpty Dumpty propounds two criteria on the rules for names:
Each actor has complete control over the names he uses,

All other actors must respect the meaning that an actor
has chosen for a name,

We are encouraged to note that in addition to satisfying the
criteria of Humpty Dumpty, our names also satisfy those
subsequently proposed by Bill Wulf and Mary Shaw:

The default is not necessarily to extend the scope of a
name to any other actor.

The right to access a name is by mutual agreement between
the creating actor and each accessing actor.

An access right to an actor and one of its acquaintances
is decoupled.

It is possible to distinguish different types of access,

The definition of a name, access to a name, and
allocation of storage are decoupled.

The use of the prefix = does not necessarily imply the
allocation of any storage.

One of the simplest kinds of ACTORS is a cell. A cell
with initial contents V can be created by evaluating (cons-
cell V), Given a cell %, we can ask it to send back its
contents by evaluating (contents x) which is an abbreviation
for (8x (#contents)s). For example (contents (cons-cell 3))
evaluates to 3. We can ask it to change its contents to v by
evaluating (x <- v). For example if we let x be (cons-cell 3)
and evaluate (x <- 4), we will subsequently find that
{contents x) will evaluate to 4.

The pattern (by-reference P) matches object E if the
pattern P matches (cons-cell E), i.e. a "cell” [see below]
which contains E. Thus matching the pattern (by-reference =x)
against E is the same as binding x to (cons-cell E), i.e, a
new cell which contains the value of the expression E. We
shall use => [read as "RECEIVE MESSAGE"] to mean an actor
which is reminiscent of the actor LAMBDA in the lambda
calculus. For example (=> =x body) is like (LAMBDA x body)
where x is an identifier. An expression (=> pattern body) is
an abbreviation for

-109-

PLANNER

(mm=>

{#transmission

attern
i!continuation =c))

{ss%cC
(¢transmisgsion bod
($continuatIon none)) $8%))

where ===> is a more general actor that, unlike =>, does not
amplicitly binéd the continuation.
Evaluating

(s (=> pattern body) the-measaged), i.e. sending the-

message to
(=> pattern body) «

will attempt to match the-nessage against pattern. If the-

e ap——

message is not of the Yorm apecified by pattern, then the
actor 1s NOT-APPLICABLE to the-message. the-message
matches gattcrn, then body 1Is evaluated.

Evalaating (%(cases ig; £2 ... fn]) argy) will sand fl
the message arg and if it is not applicable then it will send
£2 the message arg, etc. until it finds one that is
applicable. The message ($not-applicable) is sent back to the
complaint-dept if none were applicable. Evaluating (s (cases
{£1 £2 ... £n)) args) will send £1 the message arg, ..., and
send In the message arg concurrently.

Abbreviations

7"he following abbreviations will be used to improve
readability:

{rules object clauses) for

(S (cases clauses) object%)

(let (
[x0 = ression0]
%] = sxpression]
i;; - exgres-ionn]}
body) ~ for

expEessions
express onl

exgéennionn)

((=> [=x0 =x1 ... =xn} body)

~110-

PLANNER

G. ACTOR TRANSMISSION

The world's a theatre, the earth a stage,
Wiiichh God and nature do with actors f£ill.
Thomas Heywood 1612

Consider the event of transmitting an M to a target T.

(S8RT Miks)
If the target i is the following:

(>
the=-pattern-for-the-transmission
tEe-anxf

then the-body is evaluated in an environment where the-pattern
for-the-transmission is bound to M. -
“Suppose that we have a TROUPE of actors Tr with a
distinguished subset C known as the CAST. The cast C is
distinguished by being able to directly interact immediately
with the audience. We define an EVENT to be a quadruple of
the form [T M A EC) where T is the target, M is the message, A
is the actIvator lagent, process] propelling the mesSage, and
EC is the event count of the activator A. We define a HISTORY
To be a strict partial order of events with the transitive
closure of the partial ordering ~» [read as PRECEDES] where

[tl ml al ecl] ~» [t2 m2 a2 ec2] if
al = a2 and ecl <€ ec2

or

ml is created in the action [tl ml al ecl)
and {ml} intersect {t2 m2} is nonempty,

The above definiton states that one event precedes another if
they have the same activator and the event count of one is
less than the evunt count of the other. A history will be
said to be WELL-FORMED if any member of the troupe which is
not a member of the cast is first sent to a member of the
audience beforr being the target of the first event of an
EXOGENOUS activator. The intent of this restriction is to
prevent the audience from arbitrarily affecting the internal
workings of the troupe and to further clarify tie nature of
the boundary between the troupe and its external envirorment
as represented by the audience. We will assume that all our
histories are well-formed. e allow the range of event counts
for an activator [agent, process] to be a [possibly infinite]
segment of the integers [including negative integers]. The
definition can be generalized to cover events waich have
different activators by analyzing how activators are created
and absorbed. The relation -» can be thought of as the "arrow
of time" which we require to be a strict partial order. That
ig, there is no event e such that e-»e is the case.

-111-~

PLANNER

The constraints on partial orders given below have
been extracted from a forthcoming paper "Behavioral Semantics
of Actor Systems" by Irene Greif and Carl Hewitt. Every
history involving a cell ¢ satisfies the following

conttraints:
Guaranteed Reply

Suppose
An event E of the form [c (#transmission (#contents)

(#continuation r)) A EC] of of the form [c
(#transmission [<~ x r] (#continuation r)) A EC] is in

the history.

Then
E-» ([r ? A EC') is in the history.

Retrieve the last contents stored.

Suppose
Let El be of the form [c (#transmission [<=- x]
(#continuation rl)) ? ?] and E2 be of the form [c
(#transmission (#contents) (#continuation r2)) A EC].
If F1 -» E2 is in the history and for every event E in
the history such that E is of the form l[c
(#transmission [<- y] ?) 2 ?] then E -» El1 or E2 -» E.

Then
E2 =» [r2 x A EC'] is in the history.

Certain primitive actors such as SERIALIZERS (which only let
one message thru at a time) impose additional constraints on
the partial order. Every history involving a serializer s
satisfies the following constraints:

No butting in front.

Suppose
two events of the following form are in the history:

{s (#thru rl) Al ECl] -» [s (#thru r2) A2 EC2]

Then
if E2 = [r2 (#guard g2) A2 EC2']) is an event in the

RIstory then there are events El and E3 in the history
such that

El = [rl (#guard gl) Al ECl']

E3 = [gl (#unlock) ? ?]

El -» E3 =» E2

Guaranteed repl rovided no activator
Yocks the serlalizer forever.

vm—

Suppose
El = [s (#thru rl) Al ECl] is an event in the

history and that for every event E of the form (s
(#thru r) A EC] either El --> E or there are
events [r (#guard g) A EC') and [g (#unlock) ? ?]
in the history.

Then
there is an event [rl (#guard gl) Al EC1'] in the

history.

-112-

PLANNER

Notice that we do not require a definiton of global
simultaneity; i.e. we do not require that two arbitrary events
be related by =». An event El can CAUSALLY AFFECT an event E2
only if El-»E2. We can draw a fixed but otherwise arbitrarx—_
boundary around a troupe of actors TP in order to study eir
behavior with respect to an external configuration of actors
(calleé¢ tne AUDIENCE]. Where the boundary is drawn will
depend on the rcason for attempting to isolate the behavior of
the troupe. Ve define the BEHAVIOR of a history with respect
to an audience to be the suEpartxaI ordering of the history
consisting of those quadruples [T M A EC] where the target T
is an element of the audience or the guadruple is the first™
event of an EXOGENOUS activator. The REPERTOIRE of the
troupe TP is tne class of all tue behaviors of TP »ith respect
to all audiences for the fixed external boundary. The
REPERTOIRE of a troupe defines what the troupe can do as
opposed to how it performs. Two actors will be said to be
EQUIVALENT IF they have the same REPERTOIRE. For example
{cons~ce 5) is equivalent to ((cons-cell 3) <~ 5).

We can name an actor defined by D with the name N in the
pody B by the notation (labels ([N <= D]} B). More precisely,
the behavior of the actor (labels™ {[(f <= TE £)1} B) in the
body B is defined by the MINIMAL BEHAVIORAL FIXED POINT of (E
£) i.e. the minimal repertoire M such that (E M) = M. 1In the
case where M happens to define a function, it will be the case
that the repertoire M is isomorphic with the graph [set of
ordered pairs] of the function defined by M and that the graph
of M is also the least (lattice-theoretic) fixed point of Park
and Scott, We shall use (<= N D) as an abbreviation for

(label {(N <= D]} N). For example

(<=
factorial
({cases
{(=> [0] 1)
(=> [=n] (n * (factorial (n - 1)))}1))
3) evaluates to 6

H. SIDE EFFECTS

It is sometimes necessary to be able to preserve the
complete history of events. The only events in our model
occur when an actor is sent a call. Intuitively a SIDE EFFECT
has occurred if there is some question for an actor which has
a different answer when asked of the actor on two different
occasionas. A side effect can be localized in space-time
around an event E by the following mechanism:

There is an actor T1 and message M1l such that IF the event
El= [T1 M1 Al ECl} [where as before Al is an activator and
ECT is the event count for the activator] were to happen
before E, then some later event for activator Al would have
2 different transmission than IF El happened after E.

-113~

PLANNER

Side effects destroy information. Therefore the actor
transmission primitive must not in itself necessarily have
side effects. The side eFfects in our model stem from other
actors with side effects; they are not derived from the actor
transmigsion primitive.

I. MANY HAPPY RETURNS

Many actors who are executing in parallel can share the
same continuation. They can all send a message ["return”] to
the same continuation. This property of actors is heavily
exploited in meta-evaluation and synchronization. An actor
can be thought of as a kind of virtual processor that is never
*busy" [in the sense that it cannot be sent a message].

The basic mechanism of sending a message preserves all
relevant information and is entirely free of side effects.
Hence it is most suitable for purposes of semantic definition
of special cases of invocation and for debugging situations
where more information needs to be preserved. However, if
fast write-once optical memories are developed then it would
be suitable to be implemented directly in hardware.

The following is an overview of what appears to be the
behavior of the process of an activator A transmitting a
message M to a target T.

1z Call the banker of A to approve the expenditure of
resources by the caller.

2: The banker will probably eventually send a message to the
scheduler of T.

3: The scheduler will probably eventually send a message to
the monitor manager of T.

4: The monitor manager will probably eventually send a
message to the intention manager of T.

5: The intention manager of T will probably eventually send
the message M to T.

6: The activator A will finally attempt to get some real work
done by doing T's thing.

There are several important things to know about the
process of sending a message to an actor:

1: Actor transmission is a universal control primitive in the
sense that control operations such as Tunction calls,
iteration, coroutine invocations, resource seiznres,
scheduling, synchronization, and continuous evaluation of
expressions are special cases,

2: RActors can conduct their dialogue directly with each
other) they do not have to set up some 1in rmediary such as
ports [Krutar, Balzer, and Mitchell] or possibility lists
(McDermott and Sussman] which act as pipes through which
conversations must be conducted.

-114-

PLANNER

3: Actor transmission is entirely free of si.le effocks [such
as those in the message mechanisim of the current SMALL TALK
machine of Alan Kay, in the port mechanism of Kruter and
Balzer, and in possaibility lists of McDermott and Sussman]
Being free of side effects allows us a maximur of parallelisn
and allows an actor to be engaged in several conversaticns at
tiie same time withcut becoming confused.

4: Actor transmission makes no presupposition that the actor
s=nt the message will ever send "lack"™ a message or that
"back” is even defined. The unidire~tional nature of sending
messages enables us to define iteration, monitors, coroutines,
etc. straightforwardly.

S: The ACTOR model is not an [enviromnment-pointer,
instruction-pointer] molel such as th: COKTOUR model. A
continuation is a full blown actor [with all th. rights and
privileges); i: is not a program ccunter. There are no
instructions [in tho scnse of present day machines] in our
model. Instead of instructions, an actor machine has certain
primitive actors built in hardware.

6: All of the control constructs listed below are universal
in some sense; but the actor transmission primitive in not
an immediate special case of any one of them.

6.1 GOTO is not as general because it does not allow a
message to be sent to the target.

6.2 FUNCTION CALL is too specialized because it always
binds a continuation to the sender.

6.3 SIMULA-67 CLASS INSTANTIATION is too specialized
because a class cannot be further instantiated and
because control must return to the instantiator
immediately after a detach of the class instance. The
only other way out of the clasg is <o use a RESUME
statement, RESUME [the SIMULA-67 coroutine primitive]
is separate from class instantiation and unfortunately
does not allow a message to k2 passed to the process
being resumed without a gratuitous side-effect.

6.4 Actor. transmission at this level is very simular to
the objects constructed by the J operator of Peter Landin
and the ESCAPE construct of John Reynolds. The major
contribution here is the observation that the function
call can be defined as a special case., Major differences
show up at the next lower level where the protocol with
the underlying activator [agent process] is made
explicit,

All of the above control coastructs are trivially special
cases of actor transmission.

-115-

PLANNER

J. DATA BASES

Data bases are actors that organigze a set of actors for
efficient retrieval, There are three primitive operations on
data bases: PUT, GCET, and ERASE. A new virgin default cCata
base can be created by evaluating (virgin). If we let W =
{(virgin), then W will be a virgin world. We can put an actor
{(at John airport) in the world W by evaluating (use-world W

(put (at John airport))). We could add further knowledge by
evaluating

(use-world W (put (at airport Boston))) to record that
the airport is at Boston.

(use-world W (put (city Boston))) to record that Boston
is a city.

If the constructor EXTENSION is passed a worl. w then it will
create a new default world which is an extension of w, For
example

(let {(W' = (extension W)]}
(use~-world w'
(put
(on John (flight 34)))))

will bind W' to a new world in which we have supposcd that
John is on flight #34. The world W is unaffected by this
operation. On the other hand the extension world is affected
if we do (use-world W (put (hungry John))).

Worlds can ask the actors put in them to index themselves
for rapid retrieval. Simple retrieval can be done using
patterns. For example:

(get (at ? ?) (#then Receiver) (#else Alternative))

puts Receiver in an eavironment to retrieve all the actors in
W which match the pattern (at ? ?). Now GET will thus
retrieve either (at airport Boston) or (at John airport). We
do not want to have to explicitly store every piece of
knowledge which we have but would like to be able to derive
conclusions from what is already known: We can distinguish
several different classes of procedures for deriving
conclusions. The actor >=> [read as "ON TRIGGER"] with the
syntax

(>=> pattern-for-trigger body)

creates a PLAN that can be invoked by pattern directed
invocation by a trigger which matches pattern-for-trigger.

-116-

PLANNER

K. PATTERN DIRECTED INVOCATION

Plans communicate thru making assertions, erasures, and
denials using the world machinery. We assume the existence of
a generator ANONYMOUS which generates new anonyrious
individuals anonl, anon2, etc. wihich have never before been
encountered, To show the utility of such a generator
consider the problem of proving (subset x z) [x is a subset of
2] where we have a world which contains:

(subset x w)
(subset x y)
(subset y z)
{subset (union x 8) t)

[prove-subset <=
(>=> (prove (subset =a =c))
(prove (subset a =b)
(#then
(prove (subset b c))))))

[prove-subset-union <=
(>=> (prove (subset =a (union =a ?)))
(done))]

The problem is solved by "wishful thinking." 1In order to
find b such that (subset x b) we let b be an anonl which is a
never before encountered individual which we wish to have
Certain properties. Then we note that anonl might be w. But
we are unable to prove (subset w z) so we reconsider and see
that anonl might be y. We successfully prove (subset y z) and
8o the problem is solved.

Now consider the problem of proving (subset x t). As
above let b be anon2 to try to satisfy (subset x b). Wwe find
that neither w nor y work out as anonl so we try The plan
prove-subset-union., Thus it is sufficient that anon2 be
(uniou x ?) where we don't know what ? is yet. We hopefully
continue trying to show that (subset anon2 t) and find that we
would be done if only anon2 were (subset x s). This is
satisfactory if we let ? be s and so we have solved the
problem,

L. McCARTHY AND THE AIRPORT

We would like to illustrate some uses for statements
about the possibility of McCarthy being at the airport to
illustrate the point that what counts is not whether some
particular statement is TRUE or FALSE but rather the uses to
which the statement can be put.

McCarthy is at the airport.
(put (at McCarthy airport))

-117-

PLANNER

If a person is at the airport, then the person might take a
plane from the airport.
{(put-at <=
(>=> (put (at =person airport))
(Put (might (take-plane-from person airport))))]

McCarthy is not at the airport.
(deny (at McCarthy airport))

If a person is not at the airport then he can't take a plane
from the airport.
(deny-at <=
(>=> (deny (at =person airport))
{put (can't (take plane from person airport))))]

It is not known whether McCarthy is as the airport.
(erase (at McCarthy airport))

If it is not known whether a person is at the airport then
erase whatever depends on previous knowledge that the person
is at the airport,
{erase-at <=
(>=> (erase (at wperson airport))
(find-all (depends—cn =g (at person airport))
(#then (erase s))))]

Get McCarthy to the airport.
(achieve {(at McCarthy airport)})

To achieve a person at a place:

Find the present location of the person.
Show that it is walkable from the present location to the

car.
Show that is drivable from the car to the place.

{achieve-at <=
(>=> (achieve (at ®person =place))
(achieve
(find (at person spresent-location)
(¢then (show (walkable present-location

car)
(§then
(show (drivable car place)
(felse (make-plan (at person
Place))))))))]}

Show that McCarthy is at the airport.
(show (at McCarthy airport))

=118~

PLANNER

To show that a thing is at a place show that the thing is at
some intermediate and the intermediate is at the place.
{show=-at <=
(>=> (show (at =thing =place))
(show (at thing =intermediate)
(#then (show (at intermediate place))))))

The actor show-at is simply transitivity of at.

M. LOCIC AND PLANNING
*It is behavior, not meaning that counts."

Denotational semantics as formalized by Tarski for the
quantificational calculus is one of the crowning acihievements
of mathematical logic. It has clarified the semantics of
ordinary mathematical theorems and led to the development of
model theory which is a flourishing mathematical field in its
own right. We contend that it is less satisfactory as a
semantic base for a theory of action and change. 1In this
paper we formulate the beginnings of a semantic theory based
on behavior instead of denotation., We then make some
preliminary remarks on the relationship between behavioral
semantics and denotational semantics.

A satisfactory theory for the representation of knowledge
should have one unified totally integrated formalism and
semantics. For example we should not have one formalism and
semantics for expressing declaratives and a separate formalism
and semantics for expressing procedures. For some years now
we have been working to achieve this goal. The record of our
progress is published in the Proceedings of the International
Joint Conferences on Artificial Intelligence beginning with
the first conference in 1969. 1In the course of this research
we have developed the Thesis of Procedural Embedding of
Knowledge which is that "Knowledge of a domain is
InErInsgcall bound up with the procedures for its use." An
Important corollary I% that the rundamental technique of
artificial intelligence is Automatic Programming and
Procedural Knowledge Base Construction.

e wouIa_TTEngb show how the behavior of formulas in the
quantificztional calculus using actors and how the rules of
natural deduction follow as special cases from the ncchanism
of extension worlds. In this way we can demonstrate ncw
DEDUCTION is a special case of COMPUTATION.

»"1s Model theoretic TRUTH a sufficient foundation on which
to Base semantics for the Representation of Knowledge?"

The model theoretic definition of TRUTH for the
quantificational calculus formalized by Tarski (denotational
semantics] is very smooth but we contend that it glosses over
semantic distinctions that are crucial for the representation
of knowledge.

We find that the deductions of plans in PLANNER often
carry more conviction [in the sense of Richard Weyhrauch] than
proofs in the quantificational calculus, This is because our
minds are better at grasping the constructive relationsnips

-119-

PLANNER

between the plans than the global noneffective relationship
established Ly asserting that a set of axioms is true. Two
plan3 can affect each other only if there is a causal chain of
"wheels and cogs" connecting each other. These causal chains
are formalized in the definition of HISTORY for actors given
above. We seem to be able to design, control, and debug sets
of plans better than sets of axioms. The Ristory o!'!ﬁ%iell's
Paradox and the question of the independence of the Axiom of
Choice illustrate some of the kinds of problems with
denotational semantics. Our point is further illustrated by
the several inconsistent formulations of the "Blind Hand
Problem" that have been produced in the gquantificational
calcul 's, Their inconsistency has been discovered almost by
accident as proofs by contradiction get shorter and shorter
until the negation of the consequence is found to be
superfluous to the proof] People are quite tolerant of minor
inconsistencies and.the inability to tolerate any
inconsistency at all in formulating problems is a sign of
excessive semantic rigidity. In general we feel that a
contradictIon {s evidence *or a !23 in one's plans or in the
plan which is being constructed and that to satisfactorily
resolve the bug it may be necessary to examine all the
assumptions being made instead of only the most recent one.
Curxently there are no good ways to debug sets of axioms
whereas there is a well established and rapidly developing
technology for debugging procedures.

Another symptom of the problems with denotational
semantics has been its failure to capture the notion of
intuitive semantic entailmeat. Given that the moon is not
made of green cheese, the following proposition is wvalid in
the quantificational calculus:

"'The moon is made of green cheese' implies l+1y2"
Worse yet, the following sentence is also valid:
"'The moon is not made of green cheese' implies l+1=2"

The problem is that denotational semantics defines (X IMPLIES
Y) solely in terms of the denotation [truth value) of X and ¥
n3tead of insisting on a causal connectior. from X to Y.
Logical implication is a useful concept in its own rigﬁt and
we will formulate its behavior below; but it is a serious
limitation if stronger more intuitive forms of entailment
cannot be semantically de¥flned. The most natural way to write
these semantic entailments appears to be as Procedural plan
schemata that implement particular causal entailments.

We contend that deduction is best regarded as a special
case of utation., ~Consider a formula of the form (every
phi) whigg means that for every x we have that (phi x) is the
case., The procedural meaning of the formula is a PLANNER
SCHEMA for how it can be used. The formula has two important
uses: it can be asserted and it can be proved.

Our behavioral definitions are reminiscent of classical
natural deduction except that we have four introduction and
elimination rules (PROVE, DISPROVE, ASSERT, and DENY] to give
us more flexibility in deallng with negation.

-120-

"Then Logic would take you by the throat,
and force you to do it!"
wls Carroll

[every <=
{=> [=phi]
(cases
[(=> (#prove)
(let
{{g = (anonymous)]}
(assert (object =qg)
(#then (prove (phi g))))))
(=> (#disprove)
(disprove (phi =x)))
(=> (#assert)
(assert
{(>=> (assert (object x))
(assert (phi x)))))
(=> (#deny)
(let
{[g = (anonymous)]}
(assert (object gq)
(#then (deny (phi g))))))
(=> (#display =s)
(s
{(print-open " (")
(print-string "every")
(print phi)
(print-close ")")))1))]
{some <=
(=> [=phi]
(cases

[(=> (#prove)
(prove (phi =x)
(#then (prove (object x)))))
(=> (#disprove)
(let
{lg = (anonymous)])}
(assert (object g)
(¢then (disprove (phi g))))))
(=> (dassert)
(let
{lg = (anonymous)]}
(asgsert (object g)
(#then (assert (phi g))))))
(=> (#deny)
(z.3sert
{(>=> (assert (object =x))
{deny (phi x)))))
(=> (#display =s)
(s
(print-open " (")
(print-string "scme")
(print phi)
(print-close ")")}))1))]

-121-

PLANNER

PLANNER

[and <=

(=> (#and =conjuncts)

(cases
{(=>

(=>

(=>

(=>

(=>

(#prove)
(rules conjuncts
[(=> (empty)
(done))
(=> (#and =conjunct =rest-conjuncts)
(all-conjuncts
(#conjuncts
(prove conjunct)
(prove (sand rest-
conjunctst)))))1))
(#assert)
(rules conjuncts
[(=> (empty)
(done))
(=> (#and =conjunct =arest-conjuncts)
(all-conjuncts
(#conjuncts
(assert conjunct)
(assert (%and rest-
conjunctss)))))]))
(#disprove)
(rules conjuncts
[(=> (empty)
{not-disproveable))
(=> (#and =conjunct =rest-conjuncts)
{(some-disjunct
(#disjuncts
(extend-world (disprove
conjunct))
(disprove
(sand rest-
conjunctss)))))]))
(#deny)
(rules conjuncts
((=> (empty)
(not-deniable))
(=> (#and =conjunct srest-conjuncts)
(some=-disjunct
(édisjuncts
(extend-world (deny conjunct))
(deny
(sand rest-
conjunctss)))))]))
(#display =g)
(s

(print-open " (")
(print-string "and®)
(print-element con?unctl)
(print-close ")")))}))]

-122-

PLANNER

[or <=
(=> (#or =disjuncts)
(cases
{(=> (i#prove)
(rules disjuncts
[(=> (empty)
(not-proveable))
(=> (#or =disjunct =rest-disjuncts)
(cover-splits
(#disjuncts
(prove disjunct)
(prove (%or rest-
disjunctss))))) 1))
(=> (#assert)
(rules disjuncts
[(=> (empty)
(not-assertable))
(=> (#or =disjunct =rest-disjuncts)
(make-splits
(#¢disjuncts
(extend-world (assert
disjunct))
(assert (%or rest-
disjunctst)))))]))
(=> (#disprove)
(rules disjuncts
[(=> (empty)
(done))
(=> (#or =disjunct =rest-disjuncts)
(all=conjuncts
(#conjuncts
(disprove disjunct)
{(disprove (%or rest-
disjunctss)))))]))
(=> (#deny)
(rules disjuncts
{(=> (empty)
(done))
(=> (#or =disjunct =rest-disjuncts)
(all=conjuncts
(#conjuncts
(deny disjunct)
(deny (tor rest-
disjunctst)))))]))
(=> (#display =s)
(s
(print-open " (")
(print-gtring "or")
(print~-element disjuncts)
(print-close ")"))}))}))]

-123~-

PLANNER

(intuitionist-not <=
(=> [=phi]
{cases

{(=> (#prove)
(disprove phi))

(=> (#assert)
(deny phi))

(=> f#display =s)

8

(print-open " (")

(print-string "intuitionist-not")
(print phi)

(print-close ")")))})))

We find ourselves convinced that the plans defined above
nave generally useful behaviors and would expect them to be a
standard part of any actor system. However the plan .
defined below does not carry the same conviction that it
always proceeeds in"a useful or justifiable manner:

{classical-not <=
(=> [wphi]
(cases
{(=> (#prove)
(disprove phi))
(=> (#disprove)
(prove phi))
(=> (#assert)
(deny phi))
(=> (#deny)
(assert phi))
(=> (#display =s)
(s

(print-open " (")

(print-string "classical-not")
(print phi)

(print-close ")")))}))]

We find that it is extremely dubious that it is always

permissible to DENY (NOT phi) simply by KSSERTING ggé. ©
able to DISPROVE (NOT phi sinply being able to PROVE phi

is equally unconvincing,
"Garbage in--garbage out,"”

Sven with the dubjious principle embodied in our
definition of CLASSICAL-NOT we still haven't defined all the
behavior that the quantificational calculus considers valid,
In the quantificational calculus from (and theta (not theta))
every statement is deducible no matter how nonsensicalT The
!oIiowing plan schemata realize this behavior (although in our
view this behaviour is usually quite harmful):

(gigo <=
(>=> (prove =phi)
(prove
=theta

-124-

PLANNER

(#then (prove (not theta)))))]

In certain contexts we would be willing to accept the

following plan schemata although it does not always preserve
causal chains.

[indirect-proof <=
(>=> (prove (not =phni})
(extend~world
(assert phi
(#then
(prove =theta
(#then (prove (not theta)))))))))

In a similar vein we feel that there are two methods for
defining sets that carry conviction:

By specifying a generating procedure which can generate
all the elements of the set.,

By specifying a deciding procedure which is capable of
deciding for any given actor whether it is a member of
the set or not.

In some theories of computation [e.g. recursive function
theory], it can be shown that the second is a special case of
the first. However, we do not sce any reason to suppose that
it is always possible to generate all actors.

We would like to show how to use the above definitions to
prove a simple theorem of the quaatificational calculus: "If
for some x such that for every y we have (p x y) then for
every y there is some x such that (p x y)."

(implies
(sone
(=> =x
(every
(=> =y
(p xy)))))
(every
(=> =y
(some
(=> =mx
P xy))))))

The proof is accomplished in the following way:

Create an extension of the current world and call it
reality

assert (some (=> =x (every (=> =y (p x y))))) in reality
let x = anorl
assext (object anonl)
assert {every (=> =y (p anonl y))) in reality
assert (>=> (assert (object =y))
(assert (p anonl y)))
prove (every (=> =y (some (s> =x (p x y)))))

-125-

PLANNER

put (prove (every (=> =y (some (=> mx (p x ¥y))
in ctopia
let y = anon2
assert (object anon2)
assert (p anonl anon2)
prove (some (=> =x (p x anon2)))
put (prove (some (=> =x (p x anon2)))) in utopia
prove (p ? anon2)

We can distinguish several different uses for extension
worlds:

1. World Directed Invocation

The extension world machinery provides a very powerful
invocati~i: and parameter passing mechanism for procedures.
The idea is that to invoke a procedure, first grow an
extension world; then do a world directed invocation on the
extension world. This mechanism generalizes the previous
pattern directed invocation of PLANNER-67 several ways.
Pattern directed invocation is a special case in which there
iz just une assertion in the wish world. World Directed
Invocation represents a formalization of the useful problem
solving technique known as "wishful thinking® which is
invocation on the basis of a fragment of a micro-world. Terxy
Vinograd uses a special case of world-directed invocation
using restriction lists in his thesis version of the blocks
world, Suppose that we want to find a bridge with a red top
which is supported Ly its left-leg and its right-leg both of
which are of the samc color. 1In crder to accomplish this we
can call upon a genie with our wish as its message. The genie
uses vhatever domain dependent knowledge it has to try to
realize the wish.

(realize
(utopia
(#specs
(color =top red)
(supported-by =top =left-leg)
(supported-by =top =right-leg)
(left-of =left-leg =right-leg)
(color mright-leg =color-of-legs)
(color =left-leg =color-of-legs))))

2. Logical Hypotheticals

For example to prove that (implies p q) we could define
the following: v

(implies <= .
(=> [=the-antecedent =sthe-consequent]
(cases
{(=> (#antecedent)
the-antecedent)
(=> (#consequent)
the=consequent)
{(=> (#prove)
1"to prove something of the form (implies

=126~

PLAMNER

antecedent consequent)"
(extend~-world
(ass: 1t
the-antecedent
(¢then (prove the-consequent)))))
(=> (fcdetach)
1"to detach a formula from (implies the-
antececent the-congequent) it must match
the antecedent"
(=> the-antecedent
the~conscguent.))
(=> (#assert)
(assert
(»>=> (assert tne-antecedent)
(assert the-consequent))))
(=> (#disprove)
(extend=world
(assert the-antecedent
(#then (disprove the-conseguent)))))
;there is no (#deny) clause because Ben Kuipers
;found a bug in the one we proposed and we
scouldn't find a substitute that carried conviction

M

By the Normalization Theorem for intuitionistic logic the
above definition of implies is sufficient to mechanize logical
implication. The rules of natural deduction are a special
case of our rules for extension worlds and our procedural
definition of the logical connectives.

3. Alternative Worlds

(let
{{hell = (after-world-war-III wcrld-1973})]}
(compare~and-contrast world-1973 hell))

4. Perceptual Viewpoints

Perceptual Viewpoints can be mechanized as extension worlds.
or example suppose rattle-trap is the name of a world which
describes my car. Taen {front rattle-trap) could be a world
which describes my car from the front and (left rattle-trap)
can be the deccription from the left side. We can also
consider a future historian's view of the present by (view=-
from-1984 world-of-1972). Minsky [1973] ccnsiders these
possibilites from a somewhat different point of view.

N. GENERAL PRINCIPLES

The following general principles hold for the use of
extension worlds:

-127-

PLANNER

Each independent fact should be a separate assertion.

For example to record that "the banana banl is under the table
tabl" we would assert:

(banana banl)

(tablce tabl)

(under banl tabl)
instead of conglomeratirng [McDermott 1973] them into one
assertions

(at
(the banl (is banl banana))
{(place
(the tabl (is tabl table))
under))

A person knowing a statement can be analyzed into the person
believing the statement and the statement being true. So we
might make the following definition of knowing:
(know <=
(=> [=person =sstatement]
(and
(believesn person statemeat)
(true statement)))]
Thvs the statement [Moore 1973] "John knows B'll'e phone
numiexr®™ can be represesnted by the assertion:
(knows John (phone-number Bill pn0005))
where pnd005 is a new name and (phone-number bill pn0005) is
intendad to mean that the phone number of Bill is pn0005. The
assertion can be expanded as follows:
(believes John (phone-number Bill pn0005))
(true (phone-number Bill pn000S5))
However, the expansion is optional since the two assertions
are not independent of the origiral assertion.

*Whatever ic is j0od enough to tell me is
worth writin own,® said the Tortoisz., "So
entexr It In your book, pleasc.”

Lewir Carroll

Each asgertion should have juscifications {[derivations]
whicli are also assertions and which thcerefore ...

Extraneous factors such as time and causality should not
be conglomerated [Mclermott 1973]) into the extension world
mechanism. Pacts about time anJ causality should also he
separate assertions. In this way we can deal more naturally
«nd uniformly with questions involving more than one time.

Fcr example we can answer the question "How many times were
there at most two cannibals in the boat while the missionaries
and cannibals were crossing the river?® Also we zan check the
consiscency of two different narratives of overlapping events
such as might e ganerated by two people who attended the same
party. Retrieval from data bases actors takes facts about
time and causality into account in the retrieval, Thus we
8till effectively avoid most of the frame problem of McCarthy.
The ability to 4o this is enhanced by the way we define data
hases as actors.

-128-~

10.

11.

12.

13.

14.

15.

AUTOMATIC PROGRAMMING

PUBLICATIONS

Bishop, Peter and Carl Hewitt, "Planner Reference Manual
for the MULTICS Implementation,” Version 1, Planner Techni-
cal Report No. 2, September 28, 1972.

Dertouzos, M. L., M. Athans, R. N. Spann, 5. Mason, Systems,
Networks and Computation: Basic Concepts, (McGraw-HI*I,

Dertouzos, M. L., "Time Bounds on Space Computations,” IEEE
Transactions on Computers, Vol. C=-22, No. 1, January 19773,
pp. 12-17.

Fateman, Richard J., "Solution to Problem Number 2,”
(MACSYMA) , ACM SIGSAM Bulletin, Bulletin No. 24, October
1972, pp. 12-13.

Fateman, Richard J., "Rationally Simplifying Non-rational
Expressions,” ACM SIGSAM Bulletin, Bulietin No. 23, July
1972, pp. 8-9.

Fateman, Richard J., Reply to an Editorial (concerning LISP),
ACM SIGSAM Bulletin, Bulletin No. 25, March 1973,

Ginzberg, M. J., "Status of the Simulator in Protosystem I,*
Automatic Programming Group Internal Memo No. 3, July 1972.

Ginzberg, M. J., "Translation of Detailed System Simulation
Language (DSSL) to Data Set Language {DSL) in Protosystem I, "
Automatic Programming Group Internal Memo No. 5, September
12, 1972.

Hewitt, Carl, Description and Theoretical Analysis (Using
Schemata) of P : A language Tor FrovIng,¥Eeorcms and
ManIpulating Models in a EEB%t, AL"TR 258,

Hewitt, Carl, Models of Procedure and tha Teaching of Proce-
dures, in: Some Current Views on Language.

Hewitt, Carl, et al., A Universal Modular ACTOR Formalism

for Artificial Intelligence, PLANNER Technical Report No. 3,
December 1972 (Revis arch 1973 and June 1973).

Hewitt, Carl, et al., Actor Induction and Meta-Evaluation,
Journai of the ACM-3IGPFLAN Symposium on Principles of Pro-
gramning Languages, Boston, Mass., October 1973.

Jes:el, G. P., "A Theory of Computer-Aided Network Analysis,”
August 1972.

MACSYMA Primer - Introductory Section, Project MAC, M.I.T.,
AuqulE 1 .

MACSYMA Primer - Section 2: Trigonometric Functions, Proj-
ect MAC, M.I.T., August 1972, -

-129-

AUTOMATIC PROGRAMMING

16.

17.

18.

19.

20.

21.

22.

23'

24.

as.

26.

27.

PUBLICATIONS continued

MACEYMA Reference Manual, Version Pour, Project MAC, M.I.T.,
April 1973,

MACSYMA Reference Manual, Version Five, Project MAC, M.I.T.,
June 1377,

Mark, W., "Handling Goal-Structured Models,* Automatic Pro-
gramming Group Internal Memo No. 7, November 21, 1972.

Martin, W. A., Interactive Design in Protosystem I, Auto-
matic Programming Group Internal Memo No. 4, ugust 21,
1972.

Martin, W. A. and Krumland, R., A Language for Delcrib:lng
Models of the World, Automatic Programming Group Interna
Metro No. 6, October 17, 1972.

Martin, W. A., Krumland, R. and Sunguroff, A., More MAPL:

Specifications and Basic Structures, Automatic Programming
Group Internal Memo Wo. 8, February 7, 1973.

Martin, W. A., Translation of lnililh into MAPL Ulinz
Winograd's %ﬁﬁ& Transition Networks, and a ntiec
Case Grammar, Au tic Programming &roup Internal Memo

No. 11, April 17, 1973.

Morgenstern, M., "Automating the Design and Optimization
of Information Processing Systems,” Automatic Programming
Group Internal Memo No. 10, February 16, 1973.

Moses, Joel, "Toward a General Theory of Special Functions,"
Communications of the ACM, Vol. 15, No. 7, July 1972,

PP. BS0-554.

Niamir, B., “"Interactive Optimization of Information Pro-
cessing Systems Represented in Data Set Language, Automatic
Programming Group Internal Memo No. 9, February 1973,

Pless, Vera, "Power Moment Identities on Weight Distribu-
tion in Erxror Correcting Codes,” (in) Blake, lan (ed.),

Algebraic Coding Theory, History and Development, (Dowden-
: ﬂugclﬂnw -Ross, 1573;. - ’

Stinger, J. S., "Effective Computing Machines Using Inexact
Substructures,” July 1972.

~-130-

OTHER RESEARCH

Academic Staff

Prof. V. Briabrin (visiting) Prof. J. J. McCarthy (visiting)

Prof. E. Fredkin Prof. M. Rabin (visiting)
DSR Staff

G. A. Briabrin M. I. Levin

P. M. Gunkel M. Pivar

Graduate Student

F. Manning R. E. Sacks

Undexrgraduate Students

D. J. Morgan M. J. Douglas
Guest

A. Endo

-131~

OTHER RESEARCH

During the pericd from October, 1972 till April, 1973
Victor Briabrin, a Visting Professor from Moscow, USSR
was working at the Project MAC. His research was performed
on the basis of the scientific exchange program between the
National Academy of Sciences of the U.S.A. and the Academy
of Sciences of the USSR. It included studying PLANNER,
CONNIVER and related programming systems, with the purpose
to make conclusions about the important features of the
high-level programming languages used for the Artificial
Intelligence and other advanced research in the computer
science.

Part of his job was in establishing close contacts
with the group involved in PLANNER implementation, in view
of the parallel design of the similar programming system on
the soviet computer in Moscow.

Intensive use of LISP on POP-1f was done in o:13er to
compare this programming system with the appropriate ISP
implementation on the BESM-6 computer in Moscow., A
possibility of transfering POP-LISP programs onto the
BESM-6 was considered and the necessary adjustment of the
BESM-LISP system has been outlined,

Besides studying CONNIVER, PLANNER and LISP, V.Briabrin
participated in the series of Automatic Programming Group
seminars conducted by Prof. W.Martin. The purpose was to
study different programming techniques used for the general
design and specific applications of the Automatic Program-
ming Systems. Under the influence of the ideas which were
discussed in the Automatic Programming seminars, V.Briabrin
developed a model of an abstract research institute and
described it in his paper [1]. An attempt at simulating
a simple sociological structure has shown what are the
basic relation types essential for creating a model and
what are the best ways of knowledge representation in this
specific domain.

Some aspects of model implementation were also
considered, including construction of the general frame,
filling it with the spacific information and applying the
request statements,

Another paper (2], written in Russian, was prepared by
V.Briabrin for publishing in the Soviet Union. This paper
contains the general survey of the Artificial Intelligence
methods and their mixture with the systems proyramming
technology in the field of creating advanced Automatic
Programming Systems.

References.
1.An Abstract Model of Research Institute: Simple Automatic
Programming Approach, Project MAC Memc, June 1973.
2.Artificial Intelligence and Automatic Programming (Russian)
Computing Center, Academy of Sciences of the U.S.S.R.
(to be published).

=132~

* TR-1

* TR-2

TR-3

* TR-4

TR-6

TR-7

TR-8

* TR-11

TR-12

* TR-13

TR-14

PROJECT MAC PUBLICATIONS

TECHNICAL REPORTS

Bobrow, Daniel G.

Natural Language Input for a Computer
Problem Solving System, Ph.D. Thesis,
Math. Dept.

September 1964

Raphael, Bertram

SIR: A Computer Program for Semantic
Information Retrieval, Ph.D. Thesis,
Math. Dept.

June 1964

Corbatd, Fernando J.

System Requirements for Multiple-Access,
Time-Shared Computers

May 1964

Ross, Douglas T., and Clarence G. Feldman

Verbal and Graphical Language for the
AED System: A Progress Report

May 1964

Biggs, John M., and Robert D. Logcher

STRESS: A Problem-Orientcd Language
for Structural Engineering

May 1964

Weizenbaum, Joseph

OPL-1: An Open Ended Programming
System within CTSS

April 1964

Greenberger, Martin
The OPS-1 Manual
May 1964

Dennis, Jack B.

Program Structure in a Multi-Access
Computer

May 1964

Fano, Robert M.
The MAC System: A Progress Report
October 1964

Greenberger, Martin
A New Methodology for Computer Simulation
October 1964

Roos, Daniel

Use of CTSS ir. a Teaching Environment
November 1964

-133-

AD

AD

AD

AD

AD

AD

604-730

608-499

608-501

604-678

604-679

604-680

604-681

608~-500

609-296

609-288

661-807

PUBLICATIONS

TR-16

TR-17

* TR-18

TR-19

TR-20

* TR-21

* TR-22

* TR-23

* TR-24

TR-25

TR-26

Saltzer, Jerome H.
CTSS Technical Notes
March 1965

Samuel, Arthur L.
Time-Sharing on a Multiconsole Computer
March 1965

Scherr, Allan L.

An Analysis of Time-Shared Computer
Systems, Ph.D, Thesis, EE Dept.

June 1965

Russo, Francis J.

A Heuristic Approach to Alternate
Routing in a Job Shop, S.B. & S.M.
Thesis, Sloan School

June 1965

Wantman, Mayer E.

CALCULAID: An On-Line System for
Algebraic Computation and Analysis,
S.M. Thesis, Sloan School

September 1965

Denning, Peter J.

Queueing Models for Pile Memory Operation,
S.M. Thesis, EE Dept.

October 1965

Greenberger, Martin
The Priority Problem
November 1965

Dennis, Jack B., and Earl C. Van Horn

Programming Semantics for Multi-
pProgrammed Computations

December 1965

Kaplow, Roy, Stephen Strong and
John Brackett

MAP: A System for On-Line Mathematical
Analysis

January 1966

Stratton, William D.

Investigation of an Analog Technique
to Decrease Pen-Tracking Time in
Computer Displays, 5.M. Thesis,

EE Dept. '

March 1966

Cheek, Thomas B,

Design of a Low-Cost Character
Generator for Remote Computer Displays,
S.M. Thesis, EE Dept.

March 1966

=134~

612-702

462-158

470-715

474-018

474-019

624-943

625-728

627-537

476-443

631-396

631-269

TR=~27

TR-28

TR-29

TR-30

TR-31

* TR-32

* TR-33

TR-34

* TR-35

* TR-36

Edwards, Daniel J.

OCAS - On-lLine Cryptanalytic Aid
System, S.M. Thesis, EE Dept.

May 1966

Smith, Arthur A,

Input/Output in Time-Shared, Segmented,
Multiprocessor Systems, S.M. Thesis,
EE Dept.

June 1966

Ivie, Evan L.

Search Procedures Based on Measures
or Relatedness between Documents,
Ph.D. Thesis, EE Dept.

June 1966

Saltzer, Jerome H.

Traffic Control in a Multiplexed
Computer System, Sc.D. Thesis,
EE Dept.

July 1966

smith, Donald L.

Models and Data Structures for Digital
Logic Simulation, S.M. Thesis,
EE Dept.

Augqust 1966

Teitelman, Warren

PILOT: A Step toward Man-Computer
Symbiosis, Ph.D. Thesis, Math. Dept.

September 1966

Norton, Lewis M.

ADEPT - A Heuristic Program for
Proving Theorems of Group Theory,
Ph.D. Thesis, Math. Dept.

October 1966

Van Horn, Earl C., Jr.

Computer Design for Asynchronously
Reproducible Multiprocessing,
Ph.D. Thesis, EE Dept.

November 1966

Fenichel, Robert R.

An On-Line System for Algebraic
Manipulation, Ph.D. Thesis,
Appl. Math. (Harvard)

December 1966

Martin, William A.

Symbolic Mathematical Laboratory,
Ph.D. Thesis, EE Dept.

January 1967

=135~

PUBLICATIONS

AD

633-678

637-215

636-275

635-966

637-192

638-446

645-660

650-407

657-282

657-283

PUBLICATIONS

* TR=-37

TR-38

* TR-39

TR-40

TR-41

TR-43

TR-44

TR-45

TR-46

* TR-47

Guzman-Arenas, Adolfo

Some Aspects of Pattern Recognition
by Computer, S.M. Thesis, EE Dept.

February 1967

Rosenberg, Ronald C., Daniei W. Kennedy
and Roger A. Humphrey

A Low-Cost Output Terminal for
Time-Shared Computers

March 1967

Forte, Allen

Syntax-Based Analytic Reading of
Musical Scores

April 1967

Miller, James R.
On-Line Analysis for Social Scientists
May 1967

Coons, Steven A,

Surfaces for Computer-Aided Design
of Space Forms

June 1967

Liu, Chung L., Gabriel D. Chang
and Richard E. Marks

Design and Implementation of a
Table~Driven Compiler System

July 1967

Wilde, Daniel U.

Program Analysis by Digital Computer,
Ph.D. Thesis, EE Dept.

August 1967

Gorry, G. Anthony

A System for Computer-Aided Diagnosis,
Ph.D. Thesis Sloan School

September 1967

Leal-Cantu, Nestor

On the Simulation of Dynamic Systems
with Lumped Parameters and Time
Delays, S.M. Thesis, ME Dept.

October 1967

Alsop, Joseph W,

A Canonic Translator, S.B. Thesis,
EE Dept.

November 1967

Moses, Joel

Symbolic Integration, Ph.D. Thesis,
Math. Dept.
December 1967

-136-

656-041

662-027

661-806

668-009

663-504

668-960

662-224

662-665

663~504

663-502

662-666

TR-48

TR-49

* TR-50

* TR-51

TR-52

* TR-53

TR-54

TR-55

* TR-56

* TR-S57

Jones, Malcolm M,

Incremental Simulation on a Time-
Sharzd Computer, Ph.D. Thesis,
Sloan School

January 1968

Luconi, Fred L.

Asynchronous Computational Structures,
Ph.D. Thesis, EE Dept.

February 1968

Denning, Peter J.

Resource Allocation in Multiprocess
Computer Systems, Ph.D. Thesis,
EE Dept.

May 1968

Charniak, Eugene

CARPS, A Program which Solves Calculus
Word Problems, S.M. Thesis, EE Dept.

July 1968

Deitel, Harvey M.

Absentee Computations in a Multiple-
Access Computer System, S.M. Thesis,
EE Dept.

August 1968

Slutz, Donald R.

The Flow Graph Schemata Model of
Parallel Computation, Ph.D. Thesis,
EE Dept.

September 1968

Grochow, Jerrold M.

The Graphic Display as an Aid in the
Monitoring of a Time-Shared Computer
system, S.M. Thesis, EE Dent.

October 1968

Rappaport, Robert L.

Implementing Multi-Process Primitives
in a Multiplexed Computer System,
S.M. Thesis, EE Dept.

November 1968

Thornhill, D. E., R. H. Stotz, D. T. Ross
and J. E. ward (ESL-R-356)

An Integrated Hardware-Software System
for Computer Graphics in Time-Sharing

December 1968

Morris, James H., Jr.

Lambda-Calculus Models of Programming
Languages, Ph.D. Thesis, Sloan School

December 1968

-137-

PUBLICATIONS

AD

AD

AD

AD

AD

AD

662-225

677-602

675-554

673-670

684-738

683-393

689-468

689-469

685-202

683-394

PUBLICATIONS

TR-58

* TR-59

* TR-60

TR-61

TR-62

TR-63

* TR-64

* TR-65

* TR-66

Greenbaum, Howard J.

A Simulator of Multiple Interactive
Users to Drive a Time-Shared
Computer System, S.M. Thesis,

EE Dept.

January 1969

Guzman, Adolfo

Computer Recognition of Three-
Dimensional Objects in a Visual
Scene, Ph.D. Thesis, EE Dept.

December 1968

Ledgard, Henry F.

A Formal System for Defining the
syntax and Semantics of Computer
Languages, Ph.D. Thesis, EE Dept.

April 1969

Baecker, Ronald M.

Interactive Computer-Mediated Animation,
Ph.D. Thesis, EE Dept.

June 1969

Tillman, Coyt C., Jr. (ESL-R-395)

EPS: An Interactive System for
Solving Elliptic Boundary-Value
Problems with Facilities for Data
Manipulation and General -Purpose
Computation

June 1969

Brackett, John W., Michael Hammer
and Daniel E. Thornhill

Case Study in Interactive Graphics
Programming: A Circuit Drawing
and Editing Program for Use with a
Storage-Tube Display Terminal

October 1969

Rodriguez, Jorge E. (ESL-R-398)

A Graph Model for Parallel Computations,
sc.D. Thesis, EE Dept.

September 1969

DeRemer, Franklin L.

Practical Translators for LR(k)
Languages, Ph.D. Thesis, EE Dept.

October 1969

Beyer, Wendell T,

Recognition of Topological Invariants
by Iterative Arrays, Ph.D. Thesis,
Math. Dept.

October 1969

~138-

686-988

692-200

689-305

690-887

692-462

699-930

697-759

699-501

699-502

TR-67

TR-68

TR-69

TR-70

TR-71

TR-72

TR-73

TR-74

TR-75

TR-76

Vanderbilt, Dean H.

Controlled Information Sharing in
a Computer Utility, Ph.D. Thesis,
EE Dept.

October 1969

Selwyn, Lee L.

Economies of Scale in Computer Use:
Initial Tests and Implications for
the Computer Utility, Ph.D. Thesis,
Sloan School

June 1970

Gertz, Jeffrey L.

Hierarchical Associative Memories for
Parallel Computation, Ph.D. Thesis,
EE Dept.

June 1970

Fillat, Andrew I., and Leslie A. Kraning

Generalized Organization of Large
Data-Bases: A Set-Theoretic
Approach to Relations, S.B. &
S.M. Thesis, EE Dept.

June 1970

Fiasconaro, James G.

A Computer-Controlled Graphical
Display Processor, S.M. Thesis,
EE Dept.

June 1970

Patil, Suhas S.

Coordination of Asynchronous FEvents,
Sc.D. Thesis, EE Dept.

June 1970

Griffith, Arnold K.

Computer Racognition of Prismatic
Solids, Ph.D. Thesis, Math. Dept.

August 1970

Edelberg, Murray

Integral Convex Polyhedra and an
Approach to Integralization,
Ph.D. Thesis, EE Dept.

August 1970

Hebalkar, Prakash G.

Deadlock-Free Sharing of Resources
in Asynchronous Systems, Sc.D.
Thesis, EE Dept.

September 1970

Winston, Patrick H.

ILoarning Structural Descriptions from
Examples, Ph.D. Thesis, EE Dept.

September 1970

-139~-

PUBLICATIONS

AD

AD

AD

AD

AD

699-503

710-011

711-091

711-060

710-479

711-763

712-069

712-070

713-139

713-988

PUBLICATIONS

TR-77

TR-78

TR-79

TR-80

TR-81

* TR-82

TR-83

* TR-84

TR-85

TR-86

Haggerty, Joseph P.

Complexity Measures for Language
Recognition by Canonic Systems,
s.M. Thesis, EE Dept.

October 1970

Madnick, Stuart E.

Design Strategies for File Systems,
S.M, Thesis, EE Dept. & Sloan School

October 1970

Horn, Berthold K.

shape from Shading: A Method for
Obtaining the Shape of a Smooth
Opague Object from One View,
Ph.D. Thesis, EE Dept.

November 1970

Clark, David D., Robert M. Graham,

AD

Jerome H., Saltzer and Michael D. Schroeder

The Classroom Information and
Computing Service
January 1971

panks, Edwin R.

Information Processing and Transmission
in Cellular Automata, Ph.D. Thesis,
ME Dept.

January 1971

Krakauer, Lawrence J.

Computer Analysis of Visual Properties
of Curved Objects, Ph.D. Thesis,
EE Dept.

May 1971

Lewin, Donald E.

In-Process Manufacturing Quality
Control, Ph.D. Thesis, Sloan school

January 1971

winograd, Terry

Procedures as a Representation for
Data in a Computer Program for
Understanding Natural Languages,
Ph.D. Thasis, Math. Dept.

February 1971

Miller, Perry L.

Automatic Creation of a Code Generator
from a Machine Description, Elec. E.
Degree, EE Dept.

May 1971

schell, Roger R.

Dynamic Reconfiguration in a Modular
Computer System, Ph.D. Thesis, EE Dept.

June 1971

-140-

AD

715-134

714-269

717-336

717-857

717-951

723-647

720-098

721-399

724-730

725-859

TR-87

TR-88

TR-89

TR-90

TR-91

TR-92

TR-93

TR-94

TR-9S5

TR-96

TR-97

Thomas, Robert H.
A Model for Process Representation

and Synthesis, Ph.D. Thesis, EE Dept.
June 1971

Welch, Terry A.

Bounds on Information Retrieval
Efficiency in Static File Structures,
Ph.D. Thesis, EE Dept,

June 1971

Owens, Richard C., Jr.

Primary Access Control in Large-
Scale Time-Shared Decision
Systems, S.M. Thesis, Sloan School

July 1971

lLester, Bruce P.

Cost Analysis of Debugging Systems,
S.B. & S.M, Thesis, EE Dept.

Septembar 1971

Smoliar, Stephen W.

A Parallel Processing Model of
Musical Structures, Ph.D. Thesis,
Math. Dept.

September 1971

Wang, Paul S.

Evaluation of Definite Integrals
by Symbolic Manipulation, Ph.D.
Thesis, Math. Dept.

October 1971

Greif, Irene G.

Indiction in Proofs about Programs,
S.M. Thesis, EE Dept.

February 1972

Hack, Michel H. T.

Analysis of Production Schemata by
Petri Nets, S.M. Thesis, EE Dept.

February 1972 .

Fateman, Richard J.
Essays in Algebraic Simplification,

(A revision of a Harvard Ph.D. Thesis)
April 1972

Manning, Frank

Autonomous, Synchronous Counters
Constructed only of J-K Flip-Flops,
S.M. Thesis, EE Dept.

May 1972

Vilfan, Bostjan

The Complexity of Finite Functions,
Ph.D. Thesis, EE Dept.

March 1972

-141-

PUBLICATIONS

AD

726-049

725-429

728-036

730-521

731-690

732-005

737-701

740-320

740-132

744-030

739-678

PUBLICATIONS

TR-98

TR-99

TR-100

TR-101

TR-102

TR-103

TR-104

TR=105

TR-106

TR-107

Stockmeyer, Larry J.

Bounds on Polynomial Evaluation
Algorithms, S.M, Thesis, EE Dept.

April 1972

Lynch, Nancy A.

Relativization of the Theory of
Computational Complexity, Ph.D.
Thesis, Math. Dept.

June 1972

Mandl, Robert

Further Results on Hierarchies
of Canonic Systems, S.M. Thesis,
EE Dept.

June 1972

Dennis, Jack B.

On the Design and Specification of
a Common Base Language

June 1972

Hossley. Robert F,

Finite Tree Automata and w-Automata,
S§.M. Thesis, EE Dept.

September 1972

Sekino, Akira

Performance Evaluation of Multi-
programmed Time-Shared Computer
Systems, Ph.D. Thesis, EE Dept.

September 1972

Schroeder, Michael D.

Cooperation of Mutually Suspicious
Subsystems in a Computer Utility,
Ph.D. Thesis, EE Dept.

September 1972

Smith, Burton J.

An Analysis of Sorting Networks,
Sc.D. Thesis, EE Dept.

October 1972

Rackoff, Charles W.

The Emptiness and Complementation
Problems for Automata on Infinite
Trees, S5.M. Thesis, EE Dept.

January 1973

Madnick, Stuart E.

Storage Hierarchy Systems, Ph.D.
Thesis, EE Dept.

April 1973

-142-

AD

740-328

744-032

744-206

744-207

749-367

749-949

750-173

751-614

756-248

760-001

PUBLICATIONS

TR-109 Johnson, David S.

TR-110

TR-111

Near-Optimal Bin Packing Algorithms
Ph.D. Thesis, Math. Dept.
June 1973 PB 222-090

Moll, Robert

Complexity Classes of Recursive
Functions

Ph.D. Thesis, Math. Dept.

June 1973

Linderman, John P.

Productivity in Parallel Computation
Schemata

Ph.D. Thesis, EE Dept.

June 1973

~143-

™-10

™-12

™-13

T™-16

™

17

™-18

™-19

TECHNICAL MEMORANDA

Jackson, James N.

Interactive Design Coordination for
the Building Industry

June 1970

ward, Philip W.

Description and Flow Chart of the
PDP-7/9 Communicaticns Package

July 1970

Graham, Robert M.

File Management and Related Topics
(Formerly Programming Linguistics
Group Memo No.6, June 12, 1970)

September 1970

Graham, Robert M.

Use of High Level Languages for
Systems Programming
(Formerly Programming Linguistics
Group Memo No.2, November 20, 1969)

September 1970

Vogt, Carla M.

Suspension of Processes in a Multi-
processing Computer System
(Based on S.M. Thesis, EE Dept.,
February 1970)

September 1970

Zilles, Stephen N.

An Expansion of the Data Structuring
Capabilities of PAL
(Based on S.M. Thesis, EE Dept.,
June 1970)

October 1970

Bruere-Dawson, Gerard
Pseudo-Random Sequences
(Based on S.M. Thesis, EE Dept.,
June 1970)
October 1970

Goodman , Leonard I.

Complexity Measures for Programming
Languages, (Baced on S.M. Thesis,
EE Dept., September 1971)

September 1971

Reprinted as TR-85
Fenichel, Robert R.

A New List-Tracing Algorithm
October 1970

-144-

708-400

711-379

712-068

711-965

713-989

720-761

713-852

729-011

714-522

™-11

™-12

T™-16

™-17

™-18

™-19

TECHNICAL MEMORANDA

Jackson, James N.

Interactive Design Coordination for
the Building Industry

June 1970

wWard, Philip W.

Description and Flow Chart of the
PDP-7/9 Communications Package

July 1970

Graham, Robert M.

File Management and Related Topics
(Formerly Programming Linguistics
Group Memo No.6, June 12, 1970)

September 1970

Graham, Robert M.

Use of High Lavel Languages for
Systems Programming
(Formerly Programming Linguistics
Group Memo No.2, November 20, 1969)

September 1970

Vogt, Carla M.

Suspension of Processes in a Multi-
processing Computer System
(Based on S.M. Thesis, EE Dept.,
February 1970)

September 1970

Zilles, Stephen N.

An Expansion of the Data Structuring
Capabilities of PAL
(Based on S.M. Thesis, EE Dept.,
June 1970)

October 1970

Bruere-Dawson, Gerard
Pssudo-Random Sequences
(Based on S.M. Thesis, EE Dept.,
June 1970)
October 1970

Goodman, Leonard I.

Complexity Measures for Programming
Languages, (Based on S.M. Thesis,
EE Dept., September 1971)

September 1971

Reprinted as TR-85
Fenichel, Robert R.

A New List-Tracing Algorithm
October 1970

=144~

708-400

711-379

712-068

711-965

713-989

720-761

713-852

729-011

714-522

PUBLICATIONS

* T™M-20

* TM-21

™-22

™-23

™-24

™=-25

™-26

™-27

™-28

T™-29

™-30

Jones, Thomas L.

A Computer Model of Simple Forms
of Learning, (Based on Ph.D. Thesis,
EE Dept., September 1970)

January 1971

Goldstein, Robert C.

The Substantive Use of Computers
for Intellectual Activities

April 1971

Wells, Douglas M.
Transmission cf Information Between
a Man-Machine Decision System and

Its Environnent
April 1971

strnad, Alois J.

The Relational Approach to the
Management of Data Bases

April 1971

Goldstein, Robert C., and Alois J. Strnad

The MacAIMS Data Management System
April 1971

Goldstein, Robert C.
Helping People Think
April 1971

Iazeolla, Giuseppe G.

Modeling and Decomposition of
Information Systems for Performance
Evaluation

June 1971

Bagchi, Amitava

Economy of Descriptions and Minimal
Indices

January 1972

Wong, Richard

Construction Heuristics for Geometry
and a Vector Algebra Representation
of Geometry

June 1972

Hossley, Robert and Charles Rackoff

The Emptiness Problem for Automata
on Infinite Trees

Spring 1972

McCray, William A.

SIM360: A S/360 Simulator
(Based on S.B. Thesis, ME Dept.,
May 1972)

October 1972

-145-

AD

AD

AD

AD

720-337

721-618

722-837

721-619
721-620

721-998

733-965

736-960

743-487

747-250

749-1365

TM-31

T™-32

™-33

T™-34

Bonneau, Richard J.

A Class of Finite Computation Structures
Supporting the Fast Fourier Transform

March 1973

Moll, Robert

An Operator Embedding Theorem for Com-
plexity Classes of Recursive Functions

May 1973

Ferrante, Jeanne and Charles Rackoff

A Decision Procedure for the First
Order Theory of Real Addition with
Order

May 1973

Bonneau, Richard J.

Polynomial Exponentiation: The Fast
Fourier Transform Revisited

June 1973

PUBLICATIONS

AD 757-787

AD 759-999

AD 760-000

PB 221-742

BRRRRANRNAN R AR RSN A R AN AN NN NI N ANNSARNARR A AR S

TM's 1-9 were never issued

=146~

PUBLICATIONS

* Project MAC Progress Report 1
to July 1964 AD 465-088

Project MAC Progress Report II
July 1964-July 1965 AD 629-494

* Project MAC Progress Report III
July 1965-Tuly 1966 AD 648-346

Project MAC Progr: ss Report IV
July 1966-J1ly 1967 AD 681-~-342

Project MAC Progress Report V
July 1967-July 1968 AD 687-770

Project MAC Progress Report VI
July 1968-July 1969 AD 705-434

Project MAC Progress Report VII
July 1969-July 1970 AD 732-767

Project MAC Progress Report VIII
July 1970-July 1971 AD 735-148

* Project MAC Progress Report IX
July 1971-July 1972 AD 756-689

(22222222 22222 22223 2222212222222 222

Copies of all MAC reports listed in Publications may be
secured for the National Technical Information Service,
Operations Division, Springfield, Virginia, 22151, Prices
vary. The AD number must ke supplied with the request.

*Out of print, may be obtained from NTIS (see above).

~-147-

