
AD-771428

PROJECT MAC PROGRESS REPORT X, JULY
1972-JUNE 1973

E. Fredkin

Massachusetts Institute of Technology

Prepared for:

Office of Naval Research

December 1973

DISTRIBUTED BY:

~

Fredkin, Director
Performi",

Maasachusetts Institute of Technology
Projllict MAC
545 Technology Square, Cambridge, Mass. 02138

12. Spon.Ofin. N_ aod Addt ...

Advanced Research Projects Agency
30-200 Pentagon
Waahington, D.C. 20301

13. Type of Reporl .. Period
Conred Progress Rpt

6/72-6/73

ina1 Summary Report of Progress made at Project MAC during the
iod 6/72-6/73.

Rea
On-Line Computers
Multi-Acces. Computers
Dynamic Modeling
Heterarchical Programming
Computer systems
Artificial Intelligence
Computer Languages
Computer Networks
Information Systems

He. COSA Tl Fie Id/Group

ripuu.
Programming Languages
Computation Structures
Automata Theory

....... -"',
NATIONAL TECHNICAL
INfORMATION SERVICE

uso..-_elC_
~.VA.Z2I51

has been approved for public
release and aale, its distribution ia
unlimited.

THIS FOaM MAY 81 IlEPaODUCED

I.

~mlng TechnoiOU

AutOlnlltlc P'~mmlno

Mathlab

PLANNER

Othe, R rch

;1. PubllcatlaM

TABLE OF CONTENTS

PREFACE

I. COMl'UTr~R SYS'l'EMS RESEARCII
X. Introduction
B. Measurement and lmalysis of Computer

C.
D.
E.

S:'Sll'fTlS
AHPA Network Activities
Protection of Ir.formation
Miscellaneous Activities

II. PROGRAMMING TECHNOLOGY
A. Introduction
B. The Dynamic Modeling System as a Software

Laboratory
1. MUDDLE
2. CALICO
3. IRS
4. Graphics
5. Hardware and ITS System Deve.opment
6. Applications Programs

C. Computer-Aided Programming
D. Computer Networks
E. Automatic Programming

III. AUTOMATIC PROGRAMMING DIVISION
Introduction
Automatic Programming Group
A. Introduction
B. MAPL
C. Debugging Models
D. English Lanquag Input
E. Translation into PL/I
Mathlab Group
A. Introduction
B. Hardwar.~ Improvements to the Math1ab

PDP-lO
C.
D.
E.

F.
G.

Improvements to MAC-LISP
ARPA Network
New and Improved Subsystems in
MACSYr-"1A
Work in Progress
T:1e Hensel Lemma in Polynomial
Manipulation

Planner
A. Introduction
B. Intrinsic Computation
C. Adding and Reorganizing Knowledge
D. Unification
E. Hierarchies
F. syntactic Sugar
G. Actor Transmission
H. Side 8ffects
I. Milny lIaFpv Returns
J. Oilta Ba~es
K. Pattern Directed Invocation

iii

1
3
4

7
8

11

13
J5
15

18
19
24
26
28
29
30
40
57

67
f.7

69
72
74
78
84

91
91

91
92
92

94
94

97
98

104
104
106
107
l11
113
l14
l16
l17

L.
M.
N.

TABLE OF CONTENTS (continued)

McCarthy and the Airport
Logic and PlanninrJ
General Principles

IV. OTHER RESEARCH

V. PROJECT MAC PUBLICATIONS.

-11-

117
119
127

131

133

PREFACE

Project MAC was organized at the Massachusetts Institute
of ~echnology in the spring of 1963 for the purpose of conduc­
ting research in the fields of Machine Aided Cognition and
Multiple-Access Computer systems. This research has led to
the development of many innovations in computer technology,
among them the development of the Compatible Time-Sharing Sys­
tem (CTSS) and Multics.

During the year ending June 30, 1973, Project MAC was re­
organized into four major divisions: Fundamental Studie9,
Computer Systems Research, Programming Technology, and Auto­
matic Programming (including Mathlab and PLANNER). MAC has
294 people associated with it, including: 28 faculty members
mostly from the Electrical Engineering and the Mathematics
departments~ 49 staff members (DSRStaff and support staff):
105 graduate studentsJ 73 undergraduates and 7 guests.

The Fundamental Studies division consists of two sub­
groups. The Theory of Computation group has been involved
in the investigation and characterization of various complex
logical and linguistic problems in order to find more effici­
ent methods of computation. The Computation Structures Group
has been investigating the dynamics of interacting systems
and the structure of the individual systems in order to place
computer systems design on a more rational basis.

The Computer Systems Research division has been respon­
sible for the development of the Multics System in conjunction
with Honeywell, Inc. During the past year, Honeywell announced
that Multics would be offered as a standard product using
their 6180 computer system. This marks the completion of Pro­
ject MAC's involvement with Multics, which began in 1964. The
activities of the Computer Systems research division have
therefore become concerned less with prcfessional programming
development and more with academically ~riented research, es­
pecially in the field of protection of information within a
multiple access computer system. In addition, research is
being conducted on ARPA network pro~Qcols and modifications,
and the development of models of the jobs presented to the
Multics system and the system'~ r~sponse to them.

The Prcgramming Technology ~ivision has been mainly con­
cerned with the development of the "Dynamic Modeling" computer
system (D.M.S.) as a software laboratory for research in pro­
gramming. The system is intended to facilitate the formula­
tion of computer programs by the development of more effici­
ent utilities, the use of on-line interaction between program­
mer and system, powerful high-level languages, graphic as
well as alphanumeric display, and on-line library and documen­
tation of procedures and data.

The Automatic Programming Division consists of three sub­
groups: the Automatic Programming group, Mathlab, and PLANNER.
The Automatic Programming group has been concerned with devel­
opment of a system which can represent knowledge about a known
problem on a higher level of abstraction than has previously
been possible. The models which have been used in developing
this system include Management Data processing and information

-iii-

and decision system.. Its purpose is to manipulate domains
where much is already known about a given problem, but wherE
there are no means for considering sub-contexts within the
domain.

Mathlab's largest contribution this year has been the
implementation of the MACSYMA System with M.I.T. and around
the country. Further work is beinq done to debug this sys­
tem, in addition to which MACSYMA has been made operatic-Hal
within the Multic8 system.

Project MAC has been sponsoring the development of
PLANNER in conjunction with the Artificial Intelligence Lab­
oratory. PLANNER is a system concerned with the development
of knowledge-based programming, that ~s, a program which has
significant knowledge of i~s own structure and purposes.
This system is based not on a hierarchical approach, but
rather a modular one. These modules are called actors. The
PLANNER group has also been working on the construction of
a Programming Apprentice which will make it easier for ex­
pert programmers to do knowledge-based programming.

In addition to these four major areas of research,
Project MAC participated in a scientific exchange program
between the National Academy of Sciences of the U.S.A. and
the Academy of Sciences of the U.S.S.R. Professor Victor
Briabrin visited us from Moscow during the period of October
1972 to April 1973, during which time he studied various
high-level programming languages (such as LISP, CONNIVER,
and PLANNER) in order to ca.pare them with similar programs
being developed in the U. S • S • R.

During the past year the basic program of Project M..'C
was funded by the Advanced Research Projects Agency (ARPA)
and, in the area of Fundamental Studies, by the National
Science Foundation (NSF). Individual projects were supported
by the Rome Air Development Center, and IBM.

-iv-

ADMINISTRATION

Prof. E. Fredkin Director

Prof. S. S. Patil Assistant Director

D. C. Scanlon Administrative Officer

G. B. Walker Busine •• Manager

A. D. Egendorf Director of Information Services

B. H. Kohl Librarian

C. P. Doyle Administrative Assistant

Undergraduate Student.

R. Elkin

Support Staff

S. A. Bankole-Wright E. Y. Lewi.

G. W. Brown M. K. Martucci

L. S. Cavallaro E. T. Moore

R. B. Combs D. S. Niver

J. A. Darcy E. M. Roderick

L. L. GUIIIlell M. A. Stein

D. IContrimus

-v-

COMPUTER SYSTEMS RESEARCH

Academic Staff

Prof. F. J. Corbat6 Prof. M. D. Schroeder

Prof. J. H. Saltzer

DSR Staff

C. C. Garman E. W. Meyer, Jr. K. T. Pogran

R. R. Ranodia N. I. Morris M. B. Weaver

R. F. Mabee M. A. Padlipsky D. M. Wells

K. J. Martin

Graduate Students

D. D. Clark S. M. Hansen L. J. Scheffler

R. J. Feiertag D. H. Hunt A. Sekino

R. M. Frankston S. Kuo J. A. Stem

B. S. Greenberg P. A. Janson V. L. Voydock

Under2raduate Students

R. G. Bratt P. A. Green A. Nourse

D. Brioklin M. Gross J. A. Pineda

J. M. Brouqhton R. H. Gwnpertz D. P. Reed

M. G. Chang G. Harris C. D. Tavares

T. L. Davenport P. A. Karqer J. B. Williams, Jr.

L. J. DeRoma R. S. Lamson J. O. Williams

O. R. Gifford D. A. Moon

,
Support Staff

O. D. Carey C. P. Doyle D. L. Jones

D. E. Cohen S. D. Grant M. F. Webber

-1-

Prof. K. Ikeda

K. Oda

COMPUTER SYSTEMS RESEARCh

Guests

-2-

"1. Mi"azaki

COMPUTER SYSTEMS RESEARCH

A. INTRODUCTION

The most significant benchmark this year was the
announcement by Honeywell Information Systems, Inc. that
the Multics system, the object of a joint research and
development project since 1964, would be offered as a
standard product using their 6180 computer system. This
announcement heralds completion not only of the Mu1tics
project itself, but also of the successful transfer of
expertise and knowledge from Project MAC to Honeywell, so
that both maintenance and development can continue in
Honeywell' s ~ands.

The year was also marked by a continuing, and now
essentially complete, transition of the Computer Systems
Research Division from a professional programming develop­
ment team to an academically oriented research organization.
Thus, the number of undergraduate and graduate stude~ts in
the division has climbed from a low of two (in 1966) to 23,
and the number of professional programmers has dropped from
a high of about 28 (in 1967) to six. Correspondingly, the
activities of the division have shifted to research topics
which can take advantage of the unique laboratory environ­
ment represented by Multics.

These activities fall into four major categories of
Computer Systems Research. The first category is measure­
ment of statistical properties of the presented load on the
M.I.T. production Multics site, and development of models of
both the presented load and of the system's response to that
load. 3udging from the number of spontaneous inquiries, both
the measurements themselves and the models are of great
current interest tc manufacturers who seem to be developing
product lines with virtual memory and other sophisticated
features. The second category of activities are those re­
lated to the ARPA network, both working with other network
participants in developing prot?cols, and also in modifica­
tion to the Multics/ARPANET interface to respond to new
protocols and to better integrate the ARPANET as a standard
facility of a computer utility. The third category of
activity is advanced research on the protection of share­
able information stored in a multiple-access computer
utility. This topiC has recently become one of high
interest, with IBM and several other organizations rushing
to obtain some useful results. Since our group has had a
long-standing interest in the subject, it is ~.lckling some
relatively advanced problems in the area: better definition
of the essential central security kernel of a general purpose
system, and methods of certifying the correctness of an
implementation of that kernel. The fourth and final cate­
gory of activities are several joint projects with other
groups which, as will be explained in detail later, support
the general research goals of the division.

-3-

COMPUTER SYSTEMS RESEARCH

B. MEASUREMENT AND ANALYSIS OF COMPUTER SYSTEMS

Activities in measurement and analysis have boon almost
exclusively the province of students. The objective in
this area is to learn how to predict the performance effect
of a proposed system design. On the hypothesis that many
future system designs will have functional properties
similar to those of Multics, it is an especially interesting
system to measure. The availability of a mcasureable system
running with a real load has led to a burst of activity in
this area, and the performance of a wide variety of measure­
ments:

• A doctoral thesis developing a hierarchical model of
the Multics multiprogramming and demand paqing alqorithms
was completed by Akira Sekino. This thesis was significant
for its ability to predict the actual performance of Multics
under load, yet using mathematically tractable models. The
thesis is available as Project MAC Technical Report TR-103.

• In last year's progress report, a linear model of
paging behavior was reported. The model relates the n~~er
of memory references (the "heddway") between missing pages
to the size of the paging memory. For memory sizes below
4 million words, a simple, linear relation was observed.
During this year, ~ paper was written and submitted
describing the model, and further measurements halfe been
made exploring the shape of the headway function in the
region above 4 million ~!ords. These measurements indicate
that the linear approximation describes the behavior of
the M.I.T. Multics installation quite accurately for memory
sizes up to 8 million words, but that an exponential
approximation may be better above that point. These
~easurements are of considerable interest to system de­
signers, who need information about the potential performance
effect of the large primary memory systems which are be­
comioJ economically feasible with recent advances in Large
Scale Integration (LSI) production technology. A Master's
thesis by Bernard Greenberg will be available in a Project
MAC Technical Report.

• A method of measuring a single user's load on primary
memory in a paging environment, in order to estimate program
"size" and also to provide a reasonable charge for usage
was tried, evaluated, and then added to the standard Multics
system. The principle of the method, is as follows: for a
given size of memory, a "large" program would be expected
to cause more missing page faults than a "small" program.
Thus, a simple page fault count could provide a crude
estimator of program size. In a multiprogramming environment,
however, the amount of memory available to a program may be
different every time the program runs. Thus, a Rimple page fault
count would provide a quite variable estimate. On the other
hand, since the page fault count climbs when this memory is

-4-

COMPUTER SYSTEMS RESEARCII

smaller, and vice-versa, the product of memory siz£, and number
of page faults should b~ a relatively stable number, but one
which is larger for larg~r programs. (To the extent that an
individual program follows the linear paging model, tht;' measure
should be perfectly constant with different memory sizes.) The
new charging schem~ uses this general strategy, and produces a
memory usage measure which seems to be proportional to program
size, and which varies with a ten-fold change in memory size by
no more than 30 to 50%. Currently, this scheme is documented
in the form of thret: internal working papers, two by Robert
Frankston, and one by Prof. J. Saltzer.

• In early 1912, a drum space allocation and access request
scheduling strategy called "folding" was implemented on the
Multics system. This algorithm t~aded effective drum storage
capacity for drum access time by maintaining multiple identical
copies of each page on the drum. spaced equally around the drum
circumference. When a page on the drum is to be read, the copy
closest to the drum read heads is used, thereby reducing the
drum access time.

The reduction of drum size due to folding causes a redistri­
bution of secondary memory access requests between drum and disk
(the third level of memory). An analytic model of the drum
behavior under the folding strategy (a variation of a model due
to Coffman) was constructed, and using the previously mentioned
"linear model" for th£ paging behavior o~ the Multics system,
an analysis was developed to predict the mean access time of the
combined drum-disk memory system as a function of the number of
drum folds. Experiments were conducted with several possible
configurations of the Multics system under a benchmark load to
verify the analysis, and to verify that the number of drum folds
actually being used in normal Hultics service is optimum. A
paper describing these results, hy Lee Scheffler, has been sub­
mitted to the Fourth ACM Conference on Operating Systems
Principles, to be held in October, 1973.

• In the past, disk subsystem design, equipment and configura-
tion selection, and :.nt.erface algorithm decisions have usually
beeh made informally, without hard data to compare the perform­
ances of alternative disk subsystem architect.ures. A class of
infinite-population queueing network models are being developed
for predicting the probability density function of disk sub­
system access time, given specifications of disk subsystem
equipment, configuration, and load of arriving access requests.
The models are unique in that they are effective for the types
of loads typically encountered in virtual memory systems which
u:~e the disk subsys tem as a paging device. The models and
analysis methods are applicable to a wide range of disk sub­
system types, including both fixed- and movable-head disks,
single or multiple channel disk subsystems, and non-pre-emptive
priority arrangements for expediting the service of some access
reque&ts at the expense of others. Straightforward analytic
methods are used to derive relationships between access time,
configuration, and load, which are then solved numerically. A

-5-

COMPUTER SYSTEMS RESEARCH

set of programs have been developed which evaluate the models
and can be used to experiment with proposed disk subsystem
configurations. A Master's thesis describing this work, by
Lee Scheffler, is in preparation.

• Many problems in computer system performance modelling and
evaluation require the manipulation of probability density
functions and the solution of complex queueing system problems.
Analytic methods are of limited applicability to such problems
because unrealistic assumptions often must be made in the name
of mathematical tractibilit.y. In the course of research on
disk subsystem performance evaluation, a system of programs was
developed on Multics for performing numerical co~putations on
probability density functions. Several basic primitives are
currently implemented for: creating probability density functiuns
of the common analytic shapes (exponential, hyperexponential,
Erlang, normal, uniform, impulse), or any combination of these,
or of any shape specified by a table of sample points; for com­
bining probability density functions (weighted summation, con­
volution); and for displaying computing statistics (mean,
varianr-e, i,~rcentile points), and cOlllPutinq derived probability
functions (cumulative probability distribution functions). These
basic pri~tives are combined with iterative techniques for the
solut10n ot s~mple G/G/n queueing systems (General arrival dis­
cipline/General service discipline/n independent identical
servers)~ and for more complex queueing systems. It is expected
that, as .~rfllrmace evaluation research continues, this system
of programs prepared by Lee Scheffler will see use in the con­
struction and solution of more accurate models of computer
system performance.

• In systems with virtual memory, dynamic control of the
level of multiprogramming is needed to maintain u balance
between unusable idle time and time spent doing page retrieval,
such that overall system throughput is optimal. For dynamic
contrnl, a s\mple method of estimating the size of each program
is needed. A new estimating algorithm, based on extrapolation
of the previously observed paging rate of a process, (using the
linear paging model for extrapolation) was proposed and imple­
mented, in a test version of Multics. Measurements are not yet
complete, but the scheme has already proven to be at least as
effective as the currently implemented, very complex, heuristic
estimator. There is now growing evidence that the earlier, first
attempt at an estimating algorithm treats large programs very
poorly. An undergraduate thesis by David Reed has been completed
on this subject and he is continuing to experiment with the
technique.

In addition to the measurement and analysis activities
mentioned above, comparison of performance of Multics on the
Honeywell 645 computer with that on the newer 6180 computer is
underway, but not yet complete. Initial results indicate that
the hardware processor is about twice as fast, and that the re­
placement of the rotating drum with a bulk core hes reduced
multi-programming and therefore paging by enough to give an
overall performance increase factor of three between the two
systems. Also, informal meaBuroments of the traffic flowing
through the ARPA network attachment have been used to guide the
activities of the network group, reported in the next section.

-6-

COMPUTER SYSTEJ.tS RESEARCIf

C. ARPA NETWORK ACTIVITIES

Because of the larqe amount of production programming which
has marked the CSR division's activities in the network area in
the past, most work in this area has been carried out by staff
programmers rather than the student~. This year, student par­
ticipation is increasing. At the same time, the group is be­
coming more active in network development activities.

Two significant revisions of the Multics ARPA network soft­
ware were accomplished during the year. The first of these was
to revise an assumption that other hosts have relatively large
buffering capabilities. This assumption, made incorrect by wide
use of the Terminal Interface Processor, led to a design based
on servicing the network once per interaction with a human user
or his program at the other site. Widespread use of the TIP,
with its small buffers, produced traffic with many network
tra,-,sactions for each message, putting a severe strain on the
initial design. The revised design, which responds to small
transactions on an interrupt basis, reduces both the real-time
delays in using Multics from the network and also the overhead
costs at the price of increased complexity in the central core
of the sup~rvisor. The revised design has been in operation
since October, 1972, and has proven quite satisfactory.

The second major software revision was to convert from a
half-duplex network interface to a full duplex one, separating
reading and writing onto two hardware channels. This c~ange
was made after con~luding that the half-duplex connection is
not adequately supported by ·the network itself. (The network
resolves certain overload condi tions in a manner which drops
links to half-duplex connections.)

The full duplex connection required a new hardware inter­
face, which was developed as an undergraduate thesis by
Richard Gumpertz, with construction help from John Williams,
another undergraduate. This new interface was also designed to
operate with either a local or a distant network interface port,
and to operate with the Honeywell 6180 10M rather than with the
older Honeywell 645 GIOC thereby permitting these two other
changes to be anticipated and accepted smoothly. Parts and
engineering assistance were supplied by Honeywell, in return for
which Honeywell will be permitted to use the design in other
attachments of 6000-line computers to ARPA-like networks.

Related to conversion to the Honeywell 6180, which is lo­
cated in a different building, a second Interface Messaqe Pro­
cessor (IMP) has been ordered for installation near the 6180.
This second IMP will permit attachment to the ARPANET of the
Honeywell 6180 Hdevelopment" machine, the planned Project MAC
terminal system, the Artificial Intelligence Laboratory -mini­
robot", and the M.I.T. 370/165, all in addition to the present
three PDP-lO's and the 6180 Multics -Service- machine.

In the protocols area, members of the group were quite
active in the evolution of the new File Transfer Protocol (used
for moving files from one system to another) and the re-design
of the Telnet Protocol (used for setting up Teletype-like

-7-

COMPUTER SYSTEMS RESEARCH

terminal connections) in conjunction with other members of the
Network Working Group. The problem of arranginq for file access
while maintaining privacy was one primary issue which is still
only partly resolved. In another area, Michael Padlipsky has
proposed a "unified user-level protucol" which is intended to
facilitate use of different operating systems by people who
have not made themselves expert in the idiosyncrasies of those
systems, by providing a universal interface to common functions.

On the implementation level, the major addition was a File
Transfer Protocol server which responds to file transfer requests
arriving from other sites. A File Transfer command, a new
Telnet command for use from Multics in accessing other network
sites, and an I/O system interface module which permits any
Multics program to direct input or output to a network link, are
all in experimental use in the user interface area. A first
implementation of programs which merge the ARPA network mail
facility with the Multics mail facility was completed. A fa­
cility to automatically detect the need for and perform typewriter
case-mapp_ng was added. This facility (in principle unneeded
according to network protocol rules) allows use of Multics from
sites which do not yet provide network standard upper/lower case
facilities. The re-initialization logic of the Network Control
Program has been improved, thus allowing it to automatically
respond to and reocver from a wide variety of error conditions.
The Network driver program has been revised to be compatible
with a standard interface to the system operator, and of course,
numerous bug fixes were made along the way.

Use of Multics via the ARPA network has increased o"er the
year. New metering and reporting software was implemented in
the Fall, which shows that login8 per month increased from 254
to 950 between.September, 1972, and April, 1973. At the April
level, network use accounts for about 10' of all logins at the
M.I.T. Multics site. The metering software has also est~blished
that in the same period, the network indirect cost (that is,
extra Multics overhead involved because the network connection
was used) has dropped from about 10o, to about 7%, largely be­
cause of the software changes reported above.

D. PROTECTION OF INFORMATION

In this category of activity are several long-standing
interests as well as a substantial new activity. The long­
standing interests relate to providing mechanisms in the Multics
design which permit controlled sharing of information wi th
security agdinst unauthorized intrusions.

A doctor's thesis by Michael Schroeder was completed this
year, describing a design by which general protected subsystems
may be implemented USing a domain scheme. A protected subsystem
is a collection of programs and data with the property that the
data may be accessed only by the programs of the subsystem, and
that the programs may be entered only at designated entry points.
The general domain model improves on the earlier rin~ model in
that it does not constrain protected systems to be hierarchically
arranged when more than one is used in a single computation.

-8-

COMPUTER SYSTE~'S RESEARCII

Schroeder's thesis goes into details of both a processor archi­
tecture and also a file system design which support protected
subsystems: both are reldtively small (though intricate) de­
partures from typical current-day system designs, and thus
appear that they would be quite p~actical to implement. The
thesis is available as Project MAC TR-I04.

A second doctor's thesis in the area of protection, by
Leo Rotenberg, is in progress. Rotenberg is exploring the
consequences of attaching restrictions to information in such
a way that even after it is released to a program, the restric­
tions continue to operate. He has also developed a very inter­
esting method of controlling who may change access speCifications
in a computer system. Basically, he permits a hierarchical
control, but with constraining protocols. With Rotenberg's
scheme, for example, one could arrange that a person's manager
could have access to his personal files, but only after obtaining
the agreement of another, higher-level manager. This example
is only one of many possibilities. This thesis will be available
as a Project MAC Technical Report when it is completed.

In a related activity, Richard Bratt has completed a
bachelor's thesis which involves devising system support soft­
ware which allows easy construction of user-provided subsystems
in the protection-ring environment of Multics. Although
protection rings are provided by the hardware of the 6180, and
two rings are used by the Multics supervisor to protect itself,
user applications of protection rings have so far been limited
to special cases, since the file system provides no way of
cataloguing protected subsystems. Bratt's thesis is concerned
with appropriate cataloguing and user interface facilities.

As Honeywell transferred Multics from the 645 to the 6180
computer, the software which simulated rings of protection was
dropped out in favor of the 6180 hardware support. Although
the processor time to switch rings has dropped dramatically
(from 3 milliseconds nown to 15 microseconds) the performance
improvement so far achieved is modest, since with simUlated ring
software, ring crossings had been minimized in frequency. The
primary gain remains to be realized, as redesian of the central
core of the system can now be carried out without the need for
minimizing ring-crossings, thereby leading to probable simplifi­
cation of the central core.

A detailed paper summarizing the design of the Hultics
information protection system was written by Prof. J. Saltzer.
This paper has been submitted to the Fourth ACM Conference on
Operating Systems Principles to be held in Yorktown, ~.Y., in
October, 1973, and it will also be made part of the introduction
of the Multics Programmer's Manual.

Work on a new activity has begun: the redesign of the
central core of the Hulties system (taking advantage of the
hardware rings as well as new insight) to produce a potentially
auditable version of the parts of the system which affect
security. This new activity is a fairly ambitious one, probably
requiring abO'lt three years, and work this year has been confined
to studying various aspects of system organization which can

-9-

COMPU'l'ER SYS'l'EMS RESEARCH

potentially be made more methodical, and therefore simpler. and
thus smaller. as needed for auditability. Some of the areas
currently being studied include:

Design (and propagation of the design through the central
core of the system) of a more uniform approach to
coordination of parallel processes. The basic strategy
change is to allow several processes to operate in the
same address space. This strategy change will allow, for
c.~:am~le. the efficient handling of small network transac­
t.~on. on a scheduled basis rather than an interrupt basis.
~y other activite. which currently require elaborate
coordination strategies (e.g., stopping a process when the
user presses his attention key) can similarly be simplified
if this Change is made. Richard Feiertag is developing
this topic.

Identification of the implementation consequences of
using a single, system-wide address space with universal
segment identifiers, in contrast with the present Multics
scheme which uses a separate address space for each pro­
cess. A system-wide address space would apparently
eliminate large sections of the present supervisor which
maintain map. of the individual address spaces, the pur-
pose of this study i8 to understand just how much simpli­
fication could result. Although a revised hardware
architecture would be necessary to exploit this simplifi­
cation completely, even without revised hardware it may
be po •• ible to modularize and sepsrate those parts of the
system concerned with segment nmnber mapping. Victor Voydock
is developing this topic.

A doctor's thesis, by David Clark. is exploring a simple
but complete I/O architecture which in hardware provides
complete separation of independent users, so that the
operating system need not include any of the 'usual, very
complex, I/O strateqy and interrupt facilities -- they may
all operate in the protection environment of th~ user of
the I/O device. This scheme, if implemented, would aqain
provide a substantial reduction in the size and complexity
of the central core of an operating system.

As can be seen, all three of the above activities are
directed toward simplifyinq the system so as to make the re­
maining parts, which i~lement the security kp.rnel, susceptible
to .. thodical auditing. One final activity in this area has
been an attempt to carry out an initial audit of the user/
supervisor interface, to see both how many errors would be found
and a180 to learn about how auditing ~an be made easier. The
qeneral topic of making a system auditable relates closely with
several other research and development projects on certification
of operatinq systems currently underway at other sites. and
contacts have been set up with these other sites so that work
may be coordinated.

-10-

COMPUTER SYSTEMS RESEARCH

E. MISCELLANEOUS ACTIVITIES

Several other activities have been carried out by CSR
division members, sometimes in support of other groups with
which joint projects are underway.

In a joint project with the Automatic Programming Division,
and led by David Reed, a Multics LISP interpreter/compiler
system which is completely compatible with the LISP system on
the Project MAC PDP-IO's was developed. The Multics LISP
system was proven operational by the transfer of the Project
MAC Symbolic Manipulator (MACSYMA), via the ARPANET, to
Multics, followed by its complete and c~=rect operation. A new
LISP manual, describing the language now used on bo~h the PDP-IO's
and Multics wa~ written by David Moon and Alex Sunguroff.

Project MAC, in a joint venture with the M.I.T. Information
Processing Center, has developed a specification for a large
(8 million words) primary memory system to be attached to the
M.I.T. 6180 (Multics) computer. Rapidly developing technoloqy
in Largd Scale Integrated MaS circuitry makes such a memory
economically practical, and research in Automatic Programming
will soon require availability of such a large memory system.

The area of Multics documentation has been the last to be
transferred to Honeywell. As a result, the Multics Programmers'
Manual, through revision 14, was published by Project MAC,
although future revisions are now expected to be handled by
Honeywell. As part of revision 12, two new chapters of intro­
duction to the console language and to the programming environ­
ment were written. The chapters provide a liberal collection of
examples, and greatly ease the problem of a beginner trying to
learn the system.

Coordination of planning for the Project MAC terminal system
has been ca1~ied out with the help of Kenneth pogran who has
also coordinated the installation of data communication cables
between the Project MAC building and the Information Processin9
Center building. The Electronics systems Laboratory of M.I.T.
has agreed to help develop a detailed implementation proposal
and a prototype terminal.

-11-

COMPUTER SYSTEMS RESEARCH

PUBLICATIONS

1. Clark, D., "A Demonstration of the Multics System,"
Videotape recording, M.l.T. Center for Advanced
Engineering Studies.

2. Mu1tics Programmers' Manual, Part I, (Introduction),
Revision 12, November 30, 1972.

3. Multics Programmers' Manual, Part II, (Reference Guide),
Revision 14, April 30, 1973.

4. Multics Programmers' Manual, Part III, (Subsystem
Writer's Guide), Revision 1, May 31, 1973.

5. Schroeder, M.D., "Cooperation of Mutually Suspicious
Subsystems in a Computer Utility," Project MAC
Technical Report TR-I04.

6. Sekino, Akira, "Performance Evaluation of Multiprogrammed
Time-Shared Computer Systems,· Project MAC Technical
Report TR-l03.

-12-

I> \({)(:\{]\Ht1 I tJC 'rl;CIINOLOCY

Academic Stilff

Prof. J. J. Donovan

Prof. J. C. R. Licylider

A. K. Bhushan

E. II. Black

M. F. Brescia

R. D. Bressler

M. S. Broos

A. L. Brown

DSR Staff

M. A. Cohen

s. W. CJall<,y

J. F. Haverty

P. D. Leblinq

J. C. Michener

Graduate Students

P. M. Allaman P. W. Hughett

s. E. Cutler J. R. Johnson

B. K. Daniels D. Koenig

J. D. DeTrevillc S. Kruger

G. J. Farrell W. J. Long

R. M. Fox C. P. Mah

L. 1. Goodman J. A. Melber

Prof. S. E. Madnick

Prof. N. P. Neqroponte

S. G. Morton

L. G. Pantalone

S. G. Peltan

C. L. Reeve

1\. Vezza

II. F. Okrent

M. S. Seriff

R. A. Stern

J. R. Taggart

R. w. Weissberq

P. Yelton

Undergraduate Students

H. R. Brodie

A. V. Chan

C. C. Conklin

R. G. Curley

R. A. Guida

L. M. Gutentag

-13-

J. H. Harris

W. F. Hui

C. A. Kessel

Undergraduate Student. (cont.)

G. D. McGath C. A. Schweinhart

J. A. Petolino R. Swift

R. L. Prakkan J. D. Sybalsky

L. M. Rubin M. E. Wolfe

N. D. Ryan

Support Staff

A. J. Hicks E. F. Nangle

R. F. Hill S. B. Pitkin

-14-

PROGRAMMING TECHNOLOGY

1\. I.rrROOUCTIOU

The main goals of the research and development program of
the Programaing Technoloqy Division are computer facilitation
(.·t hWlWln programming and automatic programming. The approach
to those goa'~ involves interactive programming systems,
computer grapnics, and computer networks. Almost all the work
to be reporte<l has been done with a computer system called the
-Dynamic MoJeling System-. Its hardware base is a Digital
Equipment Corporation PDP-lO System computer with an Evans and
Sutilerland LDS-l graphic. subsystem. The o~erating system is
ITS, developed uy members of the M.I.T. Artificial
Intelligence Laboratory. Th~ computer, grapnics subsystem,
and operating sys~m constitu~e the foundations for. rather
than the focus of, the research and developll'lOnt program, and
we refer to previous annual ruports for descriptions of them.
Tne work of the past year has b~en focused on:

1. Furtner development of the Dynamic Modeling System
(DMS) as a software laboratory for research on
programming.

2. computer-aided programming.

3. Computer networks.

4. Automatic programming.

B. !!!! DYNAMIC MODELINC SYSTEM ~ ! SOFTWARE LABORATORY

The Dynamic Modeling System was conceived of four years
ago as a hardware-software system to facilitate the
preparation, testing, modification, operation, and
understanding of computer-program models. During the period
of its development, the concept has broadened to include O~ler
kinds of programs than models, but the change in the purpose
and nature of the system attributable to the broadening ha.
not baen great. The system is intended to facilitate one's
mova.ent -- and his understanding of his movement -- fro. an
initial and perhaps nebulous conception of a problem to a
sharp and definite formulation of a solution -- the
foraulation being a computer program, the execution of which
solves the problem.

The basic idea of computer facilitation of programminq.
and of problem solving through proC)ramming, is a meld of
several partss

1. On-line interaction between proqrammer and system

2. Craphic a. well as alphanumeric display

3. On-line library of tested procedures and data

4. High-level language with great expressive power

5. Efficient utilities

-15-

PaoGRNlMING TECHNOLOGY

6. On-line documentation

7. Software capable of -under~tandinq· software
sufficiently well to contribute effectively
to retrieval, testing, updating, and learning

An ideal programming and problem-solving system is
envisioned as an integraterl realization of those component
ideas that presents its capabilities to users thrc.ugh a
consistent, user-oriented language and that actively
facilitates tne users' mastery of its capabilities.

At the present time, all the listed components ~re well
developed in tl1e Dynamic ltodeling System and contri'}ute
strongly to the effectiveness of the system as a me(liwn for
programming and problem solving. In our estimate, t.he system
is among ~le oest anywhere in respect of items 1, 2, 4, 5, and
7, is unique in terms of 3, and is well on the way to being
unique in tems of 6. The Dynamic Moot.!ling System is still
''leak, howev\!r. despite significant improvements during the
past year. in terms of integration, consisten~y, and ease of
mastery l>y people who art! •• ot experienced proqramrners. 'l'lle
shortcomings in tilose areas are due JIIainly to the fact tnat
tac DynamiC Modeling System was built or. a base consisting of
an op~rating system (ITS) and several L>asic utilities (such as
tlle text editor TECO, the deL>ugging aid DDT, and the assernUler
MIDAS) developt.!d earlier wiulin a value structure emphasizing
power And sophistication as opposed to system coherence and
ease of mastery. We have sougJlt to construct a conerent
superstructure on that base, but we have not entir~ly overcome
a continuing dependence upon tile rather diverse utilities.

1'ne ',aluc of the Dynamic Modeling System as a software
laLoratory stems in large part from the LISP-like language
;~UDD.u;, from t~le coherent programming system C1\LICO, and from
t:le informa.tion retrieval system IRS. MUDDLl.: and CALICO have
boen greatly improved this past year, and a. I.Jridge between
them, Which nas the effect of bringing all the capabilities of
each wi thin the reacil of the other, has been brought into
operation. The programs of IP.s were complete at the end of
thu year, but Ins was operating with an incompl~te data baRe.
i~evertlleless, it WAS evident that thl:! long-awai ted time was at
hand \~hen information about all the software in tile system
would be available through contcnt-8l:!nsitivc (as well as narne­
dependent) means, not only to USers but to proqr.:uns.

Und\!rlying the development and usc of the Dynamic
fiodelillg System ia a concept of programming in w,lich tncre is
a ulending of the essentially -top-Jown- .lpproacll that seems
to l>e basic to what is now called "structurl!d proqrarnminq" and
of the -l>ottom-up· approach t'lat is necessarily associateu, at
l~ast to some degree, wit.} usc of a lil>rarr of prepared
procedure ana/or data modules. In t.le mtS concept, t~le us~r­
programmer should be ablt! to put toge i;.}.;!r an opt:rable program
or system of programs in a silort time. I.e slIoLll<.i then b.:l <loll.;)
to test it, to explore allU analY'l!e its oollavior and its

-16-

PROGRAMMING TECHNOLOGY

results, and to modify it -- to proct;!~d througn thost;! phases
iteratively or recursively -- with facility. 'fhe initial
phase should be carried out with the aid of a high-level
programming language anti also with recoursu to modules, .
already prepared and tested, that hunc.lle lJasic illformation­
processing tasks in a reasonaLly ~fficicnt way -- with as much
efficiency as is compatilJle \~itil tile moderatu dugrC;t\.: of
gtmerality of purpose that is eS~L:ntia,l to til~ liUCC~SS of a
modular library. In later pbascs, when tilt: gen,-,ral structure
of the program or sysb:m has been defined amI tile
"bott1eneckli" Have iJeen located, t,le programmer may sulJstitute
special-purpose motiu1~s for some of the general purpose
modules drawn from t,le library. If he uoes, and if they are
net ilope1ess1y ad hoc, he is expected, in thtl DriS concept, to
document them careTuI'ly and sulJmit them to t,u; lilJrary for
subsequent use.

An important part of our work the last two years (and
currently) has been (and is) an implementation and test of the
concept just outlined. OUr experience to date convinces us
that the implemented concept is sound and effC;tctive anti that
it is more realistic than progr~ing concepts that tacitly
assume that every programming task is begun with nothing to
build on, from, or out of.

For purposes of explication, let us aSSWde that
programmer-user ABe wishes to begin work in t'lt.l Dl~S in l-!UDDLE,
lJut in such a way as to have available the resources of
CALICO. The union of Z-tUDDLE and CALICO is called "YDRA"·
(abbreviated "Y"), and :'SUDDLJ:: within YDM is called -YM". ADC
finds a free console and types ""z LOG ABeJ Yrl~" -- where .. ,,­
lI\eans "h~ld down the CONTROL KEY while you press the key next
indic~t~d· and "~" denotes a carriage return. He then works
in folUDDLl:: in just the way he would work in an independent
~lU.MUDDLl:: (in the environment MU, to be explained) except that
.le can define HUDULE functions that are actually inuirect
calls to CALICO subroutines -- of Which there are more than
2,000, replete with on-line documentation, in the CALICO
library.

To define tne I.sUDDLB function IUVERT .M1\'i'RIX to be the
CALICO subroutine IiWt!RT, the programmer simply types to YMt

<DEF.CAL WV~RT.MATRIX H"' INVERT>

Thereafter, he can use IilWRT.MATRIX in his MUDDLE programming
just as though he had defined it explicitly in l.sUDDLE. (Soon
it will be unnecessary for the user to create the D~F.CAL link
to CALICO. If there is not already a MUDDLE function by the
same name, he will be able to refer to any CALICO function by
its CALICO name or by a predefined synonym.)

YDRA can be entered as "YC· instead of "YM", whereupon
the environment is CALICO backed up by lruDDLl> instead of
MUDDLE backed up by CALICO. At any time in Yl-t the programmer
can switch to YC by applying the MUDD~ function YC, and at
any time in YC he can switch to Y:1 by calling the CALICO

-17-

PROGRAMMING TECHNOLOGY

subroutine ya. But let U8 focul;I on YM for tue present and
give a urief description of MUDDLE.

1. :oIUDDLE

MUDDU; , .. ith the MU environment is simply MUDDLE with a
set of MUDDLE functions and files that provide several basic
conveniencea, tlle most important of which is dynamic loading
of rWDD~ functions and global data from a library. This
library (MU.LB), vhich coneists of a personal part and a
public part, is physically but not conceptually distinct from
the CALICO library. At present, MU.LD contains a few more
Ulan 1,000 functions. It ia growing rapidly. With dynamic
loading, the rtUDDLE programmer or program can call or use any
:lU.LD function or global datum simply by referring -- inside
angle brackets -- to it. name or the name of a function that
refers to it. Thus he haa an iJamedicately accessible
vocabulary about as large as that of Basic English. Adding to
tilis the D~P.CAL facility mentioned earlier, which gives him
fairly ready access·· to the more than 2,000 CALICO
subroutinea, one arrives at a -functional- vocabulary that
Legins to approach what we think it will take to turn 75
percent of a typical programming task into the specification
of top-level flow control and the preparation of calling
sequences.

Thi. is not the place, of cour.e, to offer a detailed
pre.entation of HU~D~. Let it auffice to give a very brief
description of the langwage and the status of it.
implementation and refer to two documents.

MUDDLE was designed by LISP devotee. (Sussman, Hewitt -­
of the M.I.T. Artificial Intelligence Labora~ry -- and Reeve
-- of the Programminq Technology Division of Project MAC) to
provide a JIlOre readable .yntax, JIlOre data types, readier
extensibility, a better ba.e for graphics and networking, and
several other feature. desirable in the implementation of
PLAUNER-like language.. The implementation of MUDDLE haa
been, for .are than a year, in the hands of Reeve, Daniels,
and Brodie. During the pa.t year, the evaluator, the input­
output facilities, the interrupt-handling .ection, and the
declaration .ection of the MUDDLE interpreter have been
rewritten and greatly t.proved. In addition, considerable
progre.s bas been made in the development of a ca.piler
(Reeve, Daniels, Pfi.ter).

'PayIng our re.pects to the dYURA operating-ayat .. project at
Carnegie-Mellon University, which .. y have a prior clai. to

. the nama, we are cbanqing the naM of our UYDRA to -YDM-.
The allusion to lIultiple h.ada reaains the .&JIIe.
HIt lUly be worthw.1il. to DEP.CAL the whole CALICO library
into MU.L8. That would eliainate the definitional .tep and
aaxe the aUUroutine. a~.t a. t..ediately acce •• ible to YM a.
the MU.LB function.

-11-

PROGRAMMING TECHNOLOGY

The presunt HUDDLE compiler handlf::!s all but two of tnt)
things that can legally arise, and (together with
declarations, whiCh are optional insofar as opcrauility is
concerned but essential tc effici~ncy) it yields functior.s
that run from 5 to a hundred times as fast as their
interpreted counterparts. There is, fundamentally, an inverse
relation between "expressive power" (w;lich implies that many
decisions are left to be made by the interpreter) and the
"running speed" of a language/implementation. ~{UDDLE has
great exp~f::!ssive power, and interprf::!ted MUuDLE is quite slow.
The game is to I~ve or put or leave as much expressive power
as possible in the language -- and then providf::! a declaration
facility with ",hich, after everything ha:3 been testeu and
pruven, the programmer can specialize the program with respect
to particular types of data and thereby make it possible for a
compiler to generate efficient (though not as diversely
applicable) code. The MU~DLE compiler effort is moving in
that direction. It still has a long way to go.

MUDDLE is uescribed in A MUDDLE Primer? by Pfister [32],
and the built-in operators 01 MUDDLE are fisted in A MUlJDLl::
Micro-Manual by Daniels [5].

2. CALICO ----
(,ALICO· is an environmt!nt for the kind of programming in

which the efficiency of the result1ng code is a major
consideration or in which it is advantageous to be in direct
contal:t with a ~ubsystem-oriented command interpreter or with
a larqe library of tested suhrC'utines. CALICO is almost
cOJ1~i~;tent ... ith MUDDLE in respect of basic (primitive) data
types (Brr.Jos, Haverty, Lebling) [1, 6, 8, 9, 10, 14, 20]
about as consistent as it is possicle to be while both
software systems are growing. In respect of programming
lanquage, however, CALICO is quite different from MUDDLE:
whereas MUDDLE is a single-language system, CALICO is an
environment within which several different languages may be
employed.

The assembly language of CALICO is MIDAS reinforced by a
set of conventions called "Convention II· [2, 12, 13, 15-26,
28, 29, 34-36, 38) and a collection of special ruoAS macros
and subroutines. The conventions define and the special
mac~os implement five types of subroutines together with
corresponding declarations and calling-and-returning sequences
[33, 37]. The types range from very simple and very fast to
quite complex and sophisticated but corres~ndingly l~ss
lightning-like. Subroutines of all out the simpl~st type are
dynamically loaded if they are not already in main memory when
called. The conventions also define, and the special
suuroutines implement,

'The acronym ·CALICO· i8 derived from "CA11-and-return
mediator·, LIbrary·, and ·COmmand interpreter-.

-19-

PROGRAMMING TECHNOLOGY

tHe lJiI~ic data tYP\;lS and tileir accuss methods. Thus, as used
in CALICO, .1IUAS verge" on ucing a higl1-levl;!l language. SOll\~
of tllC people \lho usc it r~qularly argue that it provides 1IlOst
of tne advantages of a high-level language witnout imposing
constraints in t;le sometim\;ls essential area of Io'!fficicnt
coding.

#\5 a result of the diligl:!nt efforts of Okrcnt and
Syualsky, CALICO offers a limited version of PL/l. Tne 1)L/l
3UUSUt compiler permits (bllt of course does not require) the
intermingling of PL/l and assembly language statements. It is
a pre-processor which produces "IiJAS output, w:lich is then
asseml>led into machine code. The PL/l procedures are CALICO
subroutines and can call anu be called by other C LIC()
suhroutines.

At a still highcr level in the scale of lanc.ruagcs is
Lcbling and Ha,oerty' sCHILL -- ·Calico' s HIgh-Level Lan~uage·.
It is quite Pdilar to -tUDD!.E in many ways uut is somewhat
simplur and more directly associated with tl1e subroutines of
the CALICO liurary. Indeed, tne results of C'iILL proqraJllllling
(just as of convention-governed MIDAS programming anu CALICO
PL/l proqramming) are regular C1i.LICO subroutines. In sOllIe
taak contexts, the choice between CIlILL and ~tUl)DLE is a matter
of personal taste or 8qO involvement. In other task contexts,
CUILL's advantage of rapiJ. access to the CALICO liLJrary or
MUUDLE's advantage of being more fully developed may dominate.

An ~portant aspect of CALICO is its command interpreter
<Seriff). It is of tile class of command inturpreters ti1at
accept and complete an incomplete command term if the
cilaracters thus far received aatch one and only one of tue
strinqs in the command set. CALICO's cOMlllAnd interpreter is
ullusual, uowever, in that it can operate with cOJIIpound cOIIWIIano
term. and provides coapletion within each component.
~reover, the ca.nand set i. controllable by the prograJllller
and his programs; the ca.mands of various sub8yst~s c~n be
introduced into the COIIIIIland search path or removed frOlll it
dyn~ically, and new subsystems can be written with calls to
the comaand interpreter as a regular CALICO subroutine.
Iildoed, this is one of the baaic ideas of the I)lolS, that any
software in the system should be callable as a function,
subroutine, macro, ••• , or data set from anywhere else in the
systea. Our earlier acknowledgement of weakness in respect of
integration referred especially to the fact that that
objective haa not been reacned in respect of the operating
systa. and in several of the utilities not developed by the
Progr_lnq Technology Division.

11. call-and-return I118diator COlleS into play wilenever one
of the top two clasaes of CALICO suuroutines is calleu and
again when it r~turns. The mediator serves several basic
functions, such as saving and rest.oring the contents uf
accUlllulators, managing atacks, c:leckiuCJ data types, and
parsing calling sequences. In addition, in certain modes, it
keep. ;liatori.s of program execution to facilitate dabuggiftCJ,
and it offers the user-progr.-er a C'lance tu int~rvene at the

-20-

PROGRAMMING TECHNOLOGY

time of eac!l call <lnu t:ach r~turn. Inasmuch as .\ fuller
.:1ccount was c;,b,en ir. tht: A:m.lal Re1-lort fOt" l~':':-'I':, ~_lc
forutY')ing may suffice for .,en~ral description. rrile maill
advances during the past year have been ir. \lata typing,
parsing of calling sequences, ami stack mar.agement (Broos,
Lebling, Harris, Haverty, Long).

Althougu the CALICO library treats ev~ry item it contains
in the ... e way, tIle items range in fact from the ::'owest-level
subroutines (that call no subroutines) to complete subsyst~ms
such a. ARCIiI~R, CHILL, DIRECT, DISKIO, GROWL, IRS, '{oM,
KUMX, lU!TWOR.J{, POLYVISIOU and SDM. l::Very item in the library
is documented under Convention II and is available on-line in
Uoth source-language and machine-language form. Since the
collection of abstracts i. now more than 6 inciu:ta thick, there
is no way to give a detailed description of the library here.
However, Table 1 lists Bome of the areas to which the
subroutines apply· and the approximate number of subroutines in
each area. Table 2 lists the IRS categories and the
distribution by number of subroutines and percentage of the
1412 subroutine entries currently in the data base. (Note
that a subroutine may be a member of more than one category.)

-u-

PROGIWIMIMG 'rICRNOLOGY

TABLE 1. SUMMARY or THE SUBSYSTEMS IN THE CALICO ENVIROlntEtlT

Name

APLIIJE

ARCH IV

CALIB

CHILL

CHAREG

COIl~

CRE!'

DATA

DEMONIT

DIRECT

Author

Haverty

Haorerty

Broca

Lebl1ng

Hui
Michener

Seriff

Seriff

Haverty
LebUng
Brooa
Long

stern

Guida
Broos

DISXIO Haverty

ESP Galley

PTP Chan
Bhushan

GROWL Michener

INTERRUPT Serif!
PACKAGE Hughett

IPC Haverty

IRS Broos

Description
Subroutine
Entries

ASCII pipeline processor

rile archiver

CALICO library system (source
files)

CALICO high-level language
similar to MUDDLE

Character recognizer

CALICO command processor

Cross-referenced listing
of a file

Entire CALICO data-typing
system, including location
1nsenaitizing, delayed
releaae of data, and
reading and printing

YDRA debugging aid

Personnel directory system

Disk data paging, storage
and retrieval

Event siaulator and presentor,
graphical and on-line
debugqin9 aid

ARPANET file transfer
progrlllll

Graphical output writing
languaqe

Routines for handling
software interrupt

Inter-process communication

Information retrieval system

-22-

2S

15

40

100

SO

50

15

300

35

10

70

25

25

50

30

10

25

PROGRAMMING TECHNOLOGY

Tallle 1 (continue",). Summary of tut.: SuLsystcms in til(.

Calico EnvirOlURtmt.

i~ame

KERNEL

r~DM

ROMX

LXTEXT

NETWRK

Reeve
Seriff
Michener
Long
Brodie

Haverty

Lebling

!lavcrty

Seriff
Bhushan
Chan

POLYVISIOl;
Michener

RJE Guida

SO~! I3roos

UTILITY ..

Dus-.:riptioll

~ernel of the CALICO
system

l~eyeu ua ta manager

Tree-structured disk storage
system

Dictionary bascu text
processing

ARPAimT user and server
":ELNET programs

E&S pictur~ display area
manager

ARPAHET remote job entry

String data manager

General utility routines

*Contributors too numerous to list.

-23-

Subroutine
Entri~s

101)

10

25

100

100

25

15

30

500

PROGRAMMING TECHNOLOGY

TADLE 2. L>ISTRlDUTION BY C."'\Tl::GORY OF TUl:: 1412
SUllROUTllU::S CURRJ::UTLY IN THE IRS lJATA BASI:.
(HOTE: SUnROUTINES MAY EXIST In ~10RE THAl~ ONE

CATEGORY.)

CATEGORY NUHDER OF \ 0P
SUBROUTINEr. ''!'O'l.'J..L

DATA MAUAGEMEUT 172 14\

DATA SET HAiiDLING 129 11\

DISPLAY 203 16\

Ii~PUT/OUTPUT 258 22\

INTERRUPT IlANDLIUG 13 1 \

STAT/MATH 67 4\

NETWORK 91 6 %

STRING 172 In

UTILITY 498 43\

NO CATEGORY 159 13\

3. !!!
One facet of the exploration of which the OMS is the

focus is the question of programmers' wfluency·. Can
programmers master a larqe set of software modules in
approximately the same way .ost people master a large
vocabulary of words and idioms of natural lanquage? In each
domain, pro~ramming and natural language, the number of terms
and module. needed may be .omewhere in the range from 5,000 to
50,000. In each domain every term and every module is complex
and stands in complex interrelation with many other teras and
modules. It i. evident from our experience that some
proqrammers wl~ participate in the development of a library of
software module. can dMvelop a high degree of fluency in the
use of those modules. GivMn a progr .. •• n .. e, auch a
proqraaaer can remember and explain what it does and how it
relatea to data types and to other programs -- he can do that
for per hap a 950 out of a 1000 MUDDLE functions and probably
almost as well for CALICO aubroutintts. It is much more
difficult to remember the name of the module qiven its
function. Even with MUDDLE functions named accordinq to a
system of naainq conventiona, with which one of us haa had
about a year'a intensive experience, in at least half of the

-24-

PROGRAMMlNG TECHNOLOGY

instances it takes some searching to find the exact name of a
desired function.

The problem of finding modules in a software library that
satisfy specified descriptions is formally very much the same
as the problem of "intellectual access" to documents in a
book-and-journal library. The solution, also, appears to be
formally very much the same: an information retrieval system.
(But of course the parameters of on-line software retrieval
systems and conventional document retrieval systems may be
quite different.) We have explored most of the conventional
libl°ary techniques -- index cards (incl uding edge-notched
cards), computer-generated lists (including inverted lists and
indexes) posted on the walls near the consoles, review articles,
human librarians, a descriptor-based on-line retrieval system,
and informal communication among "authors". All have proven
valuable, but the only techniques that appear to meet the time
press of on-line programming are on-line, interactive retrieval
techniques.

To be on~line and interactive is necessary but not
sufficient. The attributes of completeness, automated
search, and fa~t response are essential. TWo of the
information systems we have tried were found wanting mainly
because of gaps in the information base: an old ITS program
called -INFO- and a new, not yet completed MUDDLE function
called -?- (Licklider, McGath). The -?- subsystem of CALICO's
command interpreter and two subsystems for examining CALICO's
library documentation had the advantage of gap-free
completeness but suffered because one had to know the name of
what he wanted to learn about or else search by scanning. The
descriptor-based retrieval subsystem that we built at the
outset of the project was on-line and provided automatic
search via file inversion, but it suffered from slow response
because it operated in MULTICS and so, to use it, one had to
switch to the OMS NETWORK program, log i~to MULTICS, and start
up the retrieval subsystem. (It was not economical to stay
logged in all the time just to retrieve information.) These
experiences convinced us ~\at an on-line retrieval system was
precisely what we needed, but also that it must not lack in
completeness, responsiveness, or search power.

IRS (Broos) now provides those* and other described
features in one general-purpose CALICO subsystem, and
preliminary tests suggest that it will indeed solve the
problem of finding modules pertinent to specific needs that
arise during programming. IRS is available to MUDDLE as well
as to CALICO. The IRS programs are table-structured and
table-driven and thus whOlly independent of the content of the
data base to which they are connected. They can handle many
categories of infurmation: programmer's name, ftlOdule's name,
ar.gument data types and struo:tures, reslll-: data types alld
stru~tures, d~5criptors, Dewey-Decimal-IHe classification,

*Except completencsti, which r.;fers to content.

-25-

PROGRAMMING TECHNOLOGY

and so on. They provide for multi-inversion of the data files
and for automatic updating. They respond sufficiently
rapidly, even with a large data base, that users 'lill not be
frustrated by delay.

We are now going to convert INFO and the MUDDLE -?­
function over to IRS and to augment the descriptor part of the
CALICO library documentation. (Descriptors have been
neglected because, heretofore, there was no good way to use
them.) Techniques for describing MUDDLE fuactions are being
developed in connection with automatic programming (vide
infra), and preliminary results of that work are being-­
Incorporated into IRS. And, finally, a protocol for MUDDLE
prograJll'l\ing is being develope..! that will make it difficult to
define a MUDDLE function without documenting it -- and will
deliver appropriate data directly to IRS. Thus we hope,
during the coming year, to reach a point at which all MUDDLE
and CALICO routines and the key utility programs are carefully
described within a retrieval system that will give both human
and automatic programmers ready access to essential
information.

4. Graphics

Progress has been made during tile past year to~ard
incorporation of graphic techniques into programmers' regular
working procedures. Many of the basic software modules
necessary for picture definition, graphic display management,
and graphic input management are ready for application. An
applications program, PIGS, a program that facilitates the
creation (by sketching on a graphic input tablet) and editing
of figures to be printed on a line printer, was completed.
Another, a Tool for Interactive Graphic Emergency Room
Simulation (TI~ERS, described later), is nearing completion.
And a third application program, STATS, a statistical analysis
and display package, was updated to provide an efficient
interface to ARDS and IMLAC display te~inals and to the
-mouse-, the two dimensional input device available at these
terminals. Progress has been made on techniques for u8ing
graphic displays to aid in the debugging of programs. Two
such programs, a Graphical Debugging Tool, GOT (Hughett) [llJ,
and Execution Simulator and Presenter, ESP (Galley) (7J, are
discu.sed in the section on Computer-Aided Program.ing.

Advances in the CALICO environment's graphic capabilities
ceptered upon the subsystems GROWLI GRaphics Output Writing
Language (Michener), CHAREGI a CHAracter REcoGnizer for hand­
drawn charact~rs (Hui, Michener), and Polyvision, a subsystem
for managing display surface area and input tablet surface
area (Michener). Also, display subroutine modules and data
sets were made uniform, with respect to a user's view of them,
with PDP-IO CALICO subroutine modules and data sets, thus
providing a capability to dynamically load them. Special
memory storage allocation subroutines were implemented to
minimize the number of tied-uown display paqes required by a
process.

-26-

PROGRAMMING TECHNOLOGY

GROWL provides a capability for defining picturE:s in the
CALICO environment. It providos 'tho CALICO progranuncr with an
integrated means for picture definition which is indcpunuent
of the physical medium for output. It provides the necessary
modules to allow a graphics program to usc as its output
device the LDS-l display, the ARDS display and/or the nUJ\C
display. In addition, GROWL is intended to serve as a
framework for the implementation of both the ·SI::RVl:R- and
·USER· endii of the ARPA Uet, ... orX graphics protocol.

CHAREG provides a graphics programmer with a subsystem
for training and recoqnizinq hand-drawn characters, drawn on a
graphic tablet surface using a stylus. It provides a facile
means for usinq and creating character definition dictionaries
and for inserting and deleting character definitions into the
dictionaries in an operationally natural way. It was
converted to run under the CALICO environment. In addition,
it was reorganized to purify mucll of its code, make it more
efficient in terms of its execution time, and make the
subroutines within the ClJARr:G subsystem roore readily available
in the CALICO environment. CHAREG is highly modular, and has
several (8) existing encapsulations, one of which is used by
the Polyvision graphics subsystem.

The PolyviSion graphics subsystem acts as a manager which
coordinates the action of multiple substantive graphic
subsystems in their use of the display and tablet input area.
The environment provided by Polyvision allows amicable sharing
of the LDS-l display surface area by all the Llisplay
subsystems that a user may have running. At the user's finger
tips, by means of stylus input, is a mechanism for creating,
updating and deleting tasks. PolyviSion also provides fer
(again unQer stylus control) expanding or contracting a task's
allocated display area (rectangular areas called viewports)
and the management of which task (including Polyvision) is to
receive the tablet input. Polyvision accepts input from both
the user's console and tablet. Tablet input may be in the
fo~ of light buttons or hand-drawn characters that are to be
recognized by CHAREG before being interpreted by Polyvision or
one of th.a other subsystems.

By using Polyvision, tile human frees himself from the
typical mode of operation imposed by a console, i.e., the mode
in which he interacts with one subsystem for a period of time
and then turns to another. Polyvision enables him to interact
rapidly with many subsystems sWJ.tching among them merely by
moving his hand to a different part of the tablet surface.
Also, he can visually compare the displays produced by
different subsystems, or refer to one task's display while
interacting with another.

This past year saw the MUDDLE GRAPHICS facility (Daniels,
Black) [4] become fully operational. It provides the
prirr,itives to define a PIC'i'ORE. A PICTURE is a MUODLl! object
who3e type is PICTURE. It has special distinguishing
attributes. A PICTURE can be: displayed on a display device
(LOS-I, ARCS, IMLAC), erased, hit by a stylus, a sub-part of a

-27-

PROGRAMMING TECHNOLOGY

PICTURE, saved in a file, retrieved and displayed again, and
processed for plotting on a CALCOMP plotter.

'''hat GROWL provides for the CALICO programmer, MUDDLE
GRAPHI.CS provides for the MUDDLE proqrammer. Namely, it is a
metj,o.} of definil\g pictures and the t·asi,: primiti,'8s to
display them on a device. A more ambitious advancement of
MUDDI.E GRAPHICS i.. l:he !);.splay Algorithm r..angultqt' Interpreter
(O~I), ~n exper~ental version of Which has been designed and
is uneler lievelopne"t by Pfister (a member of the E:"!\CJineering
Roboti.-:s Group of Project MAC).

The intent of DALI is to provide a means of 6efinition
and creation of (dynami~ally) cl~n9in1 pictures. The purpose
of DALI i. to allow the structure arul dynamics cf a picture to
be separate froJII thp structure (\f it!! driving appllcation
proqram. In qeneral, such .epa-cation enhances modularity and
decrt"anes the COIIlpll;!Xity of i:lteractive graphics proqr
DALI has, in additios., been found to be extrerr,ely nardware
illdependent.

DALI differs from previous dls?lay-orianted lanquage. in
that it does not treat a picture as passive dl\ta, but rather
as a structure of active objects called picture modules. Each
picture modul~ contains an interrupt-driven procedure (a
-dae.on-) and as.lociated (naaed) inputs and outputs. Picture
module. coamunicate through heterarehical input/output links,
daemon. are run in response to chanqes in input values
(con~nt.), ana may c~ute and propagate new changas via
their ~ule's outputs. Facilities exist for structuring
changee in nested groups of wodules to bp. perfoDDed in
parallel or in sequence (PfiAter).

A further graphical effort in MUDDLE was the
implementation of a set of primitives to provide a facil~
D'.ean. of malting t\llllO-dimendonal plots on IKLAC and JaROS
display terainal. of equations with more than ~na variable
(Ryan). Ba.ically, all the variables but one are treated as
parameters, convenient means are provided for changing which
variable is not a paraaeter, as well a. chan'1ing p~rameter
',alue.. It alao provi<les a convenient .. ana for plottinq data
on ARDS and ~C displays.

5. Rardware!!!!! ill S.xstelft Develoeent.

The OMS PDP-10 acquireJ a DM-IO J4tJ11lOry Map froll Syst_s
Concepts of San Francisco, California, and a mueh s1lllpler
c(llllpanion map for the EvaM and Sutherland LDS-l display. An
ITS cftpahle of performing I"wapping operations between priJuxy
a:ld secondary meJllOry was obtained frca thc~ Artificial
InLel\igence Laboratory. It was modified (Brescia, Cutler,
Cohen) to provide a qracelul transitio:l from non-swapping to
8wappinq dnmain for all OMS u.er level software.
Sp~cifically, modifications were made to, the disk cnd.
(CI.1tler) -- in or,ler to provide a more ratioJial utillMt1o:l of
the OMS dbks thb.n could otherwise be achieved, the cOMole
han(Ulnq code (Cohen, Brescia) -- to handle OMS proqr .. s and

-28-

PROGRAMMING TECHNOLOGY

consolesJ the 1letwork Control Program (Brescia) -- to provide
an operational network interface; and tht: display handlinq
section (Black) -- to set up the memory map, field pa'Je -
faults, and tie uown up to 20 pages of memory for the displays
in use. Finally, an effort to m~rqe the AI, ML, DMS systems
under one sourc~ has been undertaken by Stallman, Greenblatt,
and Knight of the Artificial Intelligence Laboratory, Jarvis
of the Mathlab Group, and Brescia and Cutler of the
Programming Technology Division. 1\.n additional 32:{ of memory
(Vezza) was interfaced to the OM3 bringing its total core
memory size to 2561<*. An effort has been started to make the
LDS-l consoles more easily available to Programrnincr Tecnnology
Division programmers (Black) and to provide better character
drawing capability (Morton, Black).

We have instituted a procpdure (Brescia, Cutler, Vezza)
for hacking up ~iles on 9 trac'< magnCltic tape and have
implemented programs to carry out the procedure (Cutler). We
have also developed procedures (Brescia, Cutler, Vezza) and
programs (Cutler) for a file housek~uping system (alias Grim
File Reaper) that is run approximately O.lce a month for
backing up and deleting files \.hich have not been ref~renccd
recently.

6. Applications Programs

A substantive application program, Computer-hided
Evaluation and Design of Feedback Systems, CAEDFS (Cutler)
[3], was completed this past year Another, a Tool for
Interactive Graphical Emergency Room Simulation, TIGERS
(Weissberg), is nearing completion. These two projects
provided some experimentation with the MUDDLE and the MUDDLE
GRAPHICS facilities to test their applicability to the
implementation of application programs of this type. The
experiment prov~d very useful, as it resulted in constructive
feedback which influenced the MUDDLE and MUDDLE GRAPHICS
impl~mentations.

CAEDFS is a set of computer routines written in MUDDLE
that analyzes feedback control systems, designs compensation
networks, and outputs graphs of their predicted performanc~.
Criteria used in the analysis phase are: gain-margin, phase­
ma~qin, unity-gain frequency, DC desensitivity, Mid-band
desensitivity, minimum phase before cross-over, step response,
and maximum peaking. CAEDFS routin~s have incorporated in
them knowledge and decision processes about the applicability
and design of six types of feedback control system
compensation networks -- three series type and three minor
loop feedback type. The user may specify or let CAEDFS decide
which type of compensation to use in a given situation in
order to achieve the system design goals. The design of a
compensation network is carried out using criteria, where
applicable, such as: crossover frequency,

*K - i024.

-29-

PROGRAMMING TECHNOLOGY

phase margin, min~um phase shift, extra poles, and available
feedback gai~. ~he predicted .ystem performallce can be ~utput
~n the form of Bode, Nyquis~, and unit step response plots.

The measure on the applicability of MUDDLE to
applications 8uch a8 this is of course the ease with which
such sy.tea8 can be built and how well they operate. Let it
suffice to say thAt CAEDFS WAS designed And implemented in
le88 than four months by a graduAte student (Cutler, in
a •• ociation with Dr. J. Roberge, professor of Electrical
Engineering) AS part of hi. master's thesis work. Purther, it
analyzes feedback control systems and designs compensation
networks u8ing on the order of 1 to 20 CPU seconds.

TIGERS is in operation and is nearing completion. It was
designed and implemented by Weissberg (of the prograrAfting
Technology Division of Project MAC) in conjunction with Dr. R.
C. Lar.on, Profes.or of Electrical Engineering and Urban
Studies, and Dr. R. P. Mogielnlcki, M.D., of the Cambridge
Hospital Deparblent of C~unity Medicine.

TIGERS is a tool for designers and administrators of
hospital .. ergency roa... Through graphics and interaction
with the designer, a flexible modeling environment for the
analysis of hypothetical ho.pital .. ergency rooms is created.
Eaergency room events, e •• ily understood by people who have
little or no math .. atical or coaputer-oriented expertise, are
presented in an~ted gr.phic.l fora.

TIGERS allow. the uaer to aanipulate emergency room
re.ources .uch AS. nuaber of bed., nur •• s, doctors, x-ray
stationa, etc. A~SO, it .llows him to manipulate stati.tical
paraaeters of the model such as. average arrival rate,
probability of a pAtient requiring an x-ray, mean time at an
x-r.y station, etc. It i. iapl ... nted in 8uch a way a8 to
provide inter.ction with the mod.l in a natural and convenient
manner through the u.e of tablet input and displayed light
buttons.

C. CCIKPO'l'ER-AIDED PROGlWIIlING

Probably the greate.t .ingle ca.puter aid to progr ... ing
i. a re.ponsive, interactive cc.puter sy.t .. vi th 900d
prOCJr_ing lanquag •• , • good library, qood doc.entation, and
good retriev.l facilitie.. The ~c Modeling Sy.te., a.
thus far de.cribed, 1. in our nt such a sy.tea. On
that foUD4ation, we .re ~ildiag Ul in~rated array of aid.
to f.cilitate the followin9 .spects of pl'09E' ... ing.

1. Adainiatration of proqr_ing .,-roj.ct ••

2. ec-unication ..,ftg the _Mr. of a progr_ing
project.

3. Daaign, preliminary progr~ng, and t •• ting
and evaluation of pr.liainary progr

-30-

PROGRAMMING TECHNOLOGY

4. Programming convcnilmccs

5. Bditing

6. Debugging

7. K~eping track of softwar~ modules and mov~ng
them from initial operation through a ser1es
of steps to residence in a p~blic library

8. Uaming (within a system of naming conventions)

9. Documentation

10. Evaluation

11. Understanding programs and modules prepared
by others

12. Maintenance of modules, programs, and
systems

13. Understanding the process of programming

An essential aspect of aid to programming is to have much of

the programming task already done and to have the results

readily available for application. The libraries described in

the preceding section provide the basic mechanism for ready

availability. To have prepared in the past software that

turns out to be useful in the present or will turn out to be

useful in the future requires, in addition, a working

philosophy relating to software generality, and that

philosophy must be regarded, also, as a programming aid.

1. Administration ~ Programming Projects

This area we have only recently begun to explore

systematically. We have experimented with use of a file

area, ADMIn, as an exchange medium for goal statements and

progress reports. We have a personnel information subsystem

(Guida) • A few of us have explored the facilities provid~d by

the Network Information Center at Stanford ReseArch Institute.

Our experiences with those items indicate that, to be fully

effective, an administrative subsystem must be consonant with

four fundamental guiuelines:

1. Administrative communication must pass through
the computer and must automatically create
the records required in administrative control.

2. All substantive work must be done within the
computer system and must automatically creAte
the records required in administrative evaluation.

3. Administrative information must be organized

-31-

PROGRAMMING TECH~OLOGY

for retrieval by description rath~r than retrieval
by name.

4. The availability of computer mean~ must not be
allowed to induce overadminstration.

We are now planning an administrative subsystem, to be based
on the information retrieval system, IRS, that will be
(insofar as possible in An early version) responsive to the
four quidelines.

2. Communication Amonq the Members of ~ Programming Project

Although still larqely face-to-face and informal,
communication amon~ proqrammers has been greatly facilitated
by computerized mail, both local and via the ARPA network, and
by announcements in sy~tem and sur~ystem heralds. To date,
our mail facilities have been limited to person-to-person and
person-to-specified-group, and local and network mail have
been separate and distinct. We have designed and are
implementing a new, integrated mail service that brings all
the desirable mail and announcement features we know of into
one consistent framework (Haverty, Bhushan, Vezza, Hart) and,
in addition, incorporates features of descriptor-based
dissemination and retrieval schemes (Broos) and of
-teleconferencing· systems (Haverty, Bhushan, Vezza, Hart).

3. Design, preliminarf Programming, and Testinq and
Evaluation of PreI mInary ProgramS-- ---

In this a%ea, we have explored the use of MUDDLE as a
tool for design and preliminary programming of software later
to be implemented in CALICO. In one project, for example, one
of U8 prepared a MUDDLE program to express the general idea of
what was desired. Another then expanded the idea in MUDDLE,
explored several ways of handling key problems, and then
rewrote the whole thing in CALICO to achieve the required
operational efficiency. It was obvious that this procedure
was much more effective than other procedures within our
capability would have been. We are thinking in terms of more
objective comparisons, but objective comparison in the
programming field is fraught with difficulty. We are working
to develop the idea of designing a program by first modeling
it and then progressively turning the model into a full­
fledged program.

I~ both MUDDLE and CALICO we have simple facilities for
analyzing the temporal performance of programs. We plan to
develop evaluation subsystems that will deal with memory and
storage space as well as with time.

4. Programming Conveniences

In several experimental MUDDLE programminq environments,
we have incorpor,..ted conveniences (Parrell, Stern, Licklider,
McGath) soaewha~ similar to some originated by Teitelman in
the environment of BBN-LISP (now IU'l'ERLISP). These include

-32-

PROGRAMMING TECHNOLOGY

spelling correction, selective undoing of computation with a
display of recent history of computation, attaching and
checking of programmers' intent with respect to MUDDLE objects
(by means of a debugging mon i. tor interfaced to structure and
string editors), function~ for using and updating a random­
access documentation library, and display of progress of
computations at variable speed and detail.

It is so easy to define a dozen or so ~~rnple fu~ctions in
MUDDLE that (insufficiently "structured") programmers t~nd to
forget what they have defined before they get all the
components connected togeth~r. A convenience that overcomes
that problem is an interactive definer that keeps a record anJ
periodically files the record as well as the defined
functions. Th('.: j·nteractive definer (LickliJer) makes it easy
to revise definiti~ns as they are being formulated and permits
the programmer to defer specification of tue argument list
until after he has completed the body of the function. The
definer demands documentation inform~tion as soon as each new
function has been defined.

Another MUDDLE "convenience" -- one that would not be
required in a fully integrateu software system -- is a set of
functions that causes certain utilities to perform specialized
chores for MUDDLE programs. For example, the function TE
(Long) sends two files to TEeD, one containing commands and
the other an object, and TECD automatically performs the
commands with respect to the object and sends the modified
object back to MUDDLE, which automatically resumes processing.
Such functions simulate integration by "papering over", but
they do provide a great increment in convenience over
independent utilities.

In CALICO, most of the programing conveniences are
incorporated into the system of HIDAS macros, the command
interpreter, the call-and-return mediator, and the high-level
language CHILL. In addition to those, there are T};CO macros
to facilitate programming and documenting in adherence to
Convention II (Michener).

5. Editing

In the DMS now are text and object editors suitable for
all the available languages. TECO and lMEDIT remain the main
text editors but a new text editor (Farrell) [31] is available
in MUDDLE. There has been some progress toward the
il'lplementation of a text editor in CAJ .. ICO (Brocs). MEDULl:,
the main object (Le., structure-oriented) editor for MUDDLE
pas been greatly improved this past year (Pfister, Farrell),
a~d it has been adapted more or less satisfactorily for use
\.,.ith CHILL (Lebling). In addition, two sets of editing
primitives have been developed in MUDDLE (Pfister, Licklider),
and it is now convenient to incorporate editing operations
into application programs. Also in MUDDLE is a special editor
for editing collections or families of MUDDLE functions
(Licklider). It makes -global" changes automatically to all
the functions and implements "local- changes function-by-

-33-

PROGRAMMING TECHNOLOGY

function in response to directions from the keyl~ard or a
file.

6. Deuugging

During the past year, considerable progress has been made
in computer-aided debugging. There have been two main
focuses: (1) basic system organizat.ion to facilitate the
detection and elimination of buqa, and (2) specific debugging
tools.

Unuer the heading of basic system organization fall
several developments in MUDDLE and in CALICO. The declaration
subsystem of MUDDLE now performs type checkin9 during
interpretation (Reeve) and the error subsystem reports type
inconsistencies. Functions are available for examining the
MUDDLE stack in ways pertinent to certain error reports. The
multi-process feature of MUDDLE has been exploited to enable
one process to -Single-step· another (Farrell, Daniels). In
CALICO, the type checking provided by ClllLL (Lebling, Haverty)
serves to catch errors in CALICO subroutines as well as in
CHILL functiona.

Under the heading of specific debugging tools, the past
year has seen .. jor advances in the subsy.tems called -ESP­
(Galley) and -GOT- (Hughett) [11] and the completion of tools
for analysis of .adule interconnectivity (Wolfe) (7, 27],
cross reference. (Seriff), detection of bugs by invoking tests
during execution (Stern), and detection of parentheSis
mismatches (Daniels). ESP (Execution Simulator and Presenter)
has been rewritten in CALICO and is now a wholly regular
subsystem (Galley). GOT (Graphical Debugging Tool) has been
endowed with the capability of xecording execution history
over 10,000 or 80 instruction cycles and developing -influence
nets- wi~lin the recorded span (Hughett) (llJ. An influence
net shows, for a selected computational event, all the
preceding events that could have influenced it and all the
succeeding eventa that it could have influenced.

In both MUDDLE and CALICO, facilities have been developed
for analyzing and presenting the interdependencies of modules
in co~lex programs. A MUDDLE function aakes summaries of
MUDDLE functions, listing arguments, functions called, atoms
with global values other than functiona, atoms with local
values, and a~ms with no values (Licklider). other function.
are being prepared to check con.istency within families of
.~arized functions. In CALICO, the library-maintenance and
inforaation-retrieval syatem. jOintly analyze
interdependencies and cbeck consiatency (Broos). In large
program syste.s, such static debugging procedures appear to be
essential Decause dynamic debugging may proceed for hours
without encountering a bug that i. very auch present and
potentially disruptive.

-34-

7.

PROGRAMMING TECHNOLOGY

J(ee~int Track of Software Modules anll Movinq them from
In! u operilt1cin Through a s~rIesc;r: Steps --
60 Res~dence ~ ~ Public Library --

This aspect of programming is hanuled in CALICO Ly the
integrateu subsystem of library maintenance programs developed
during the past year (Broos, Haverty, Lcbling, Michuner). ':he
library subsysttlm proviues an entry repository for nuw
programs and takes cacil program through steps of tes ting,
document checking, and admission to the puulic library. A
complex array of pointers defines, at tlvury moment, the
current configuration of the library and its documentation. A
subset of the latter is the AllSTRAC7 DOOK, wlliell has been
published in an edition of 50 copies so that each UMS
programmer can have one at his elbow. The library-maintenance
system automatically keeps track of new acc~ssions and
periodically prints updates for the ABSTRACT BOOK. The CALICO
library-maintenance and information-retrieval systems are
rea:lonably efficient and capable of dealing with data bases of
significant size. The thought has occurtld to us that it might
provide a good base for coping with the software problems of a
sector of a computer network.

The provisions for keeping track of software in MUDDLE
are experimental and not as efficiently developed as those of
CALICO, but they connect more closely with the ongoing work of
the individual programmer. The arrangements for following the
programmers work are part of a MUDDLE programming environment
called -MU· (Gray, Licklider, McGath, Yap).

MU provides the programmer with a s~ecial set of
functions and files (Licklider, McGath) and a dynamic loader
(Pfister) that facilitate his work. The part of this
apparatus that deals with keeping track of software includes
the interactive function definer mentioned earlier. TI)e
defined functions and their documentation 90 to separatu
·step-l· files as soon as definition is completed. There are
three higner levels of files called step-2, step-3 and step-4.
Each level gives an inuication of the state of the exactness
of the function's documentation and the vi~or with which the
function has been tested.

There is a protocol for promoting functions from one
level to another. In the final step in the move, functions
and data sets (far more of the former than of the latter) that
promise to be generally useful are moved into tne MU
environment's public library (step-4 files), and at that time
the documentation pertaining to them is reviewed and, if
necessary, a final update is made.

Each year about a dozen undergraduate students carry out
programming projects in a Project Laboratory associated with
the OMS. This year we hope to -debug- the software control
system just discussed by using it in lhe Project Laboratory.

-35-

PROGRAMMING TECHNOLOGY

1:1. IIaming

Systematic procedures for naming the objects of a complex
software syatem may be almoat as important aa systematic
procedures for describing objects -- or may not bel the
question is open. We have experimented with several
conventions for naming files (Martin) [29J and functions
(Licklider). none haa achieved unanimous acceptance, even
within our compact group, probably because naming offspring is
viewed as an individual or family right and an area reserved
for idiosyncratic expression. Nevertheless, it is obvious
that sharing of software resources would be fostered by some
nonzero degree of agreement about how to name objects, and we
are atill exploring the matter.

A basic problem in aoftware nomination is whether a name
should reflect meaning in a substantive application area
(e.g., COST.OF.BEEr) capable of providing strong semantic
support to a person who is trying to understand a program, or
whether the name should suggest the data type or some other
syntactic aspect that would still have significance if the
same software object were employed in a different application
area (e.g., INTEGER.l or DOLLARS.AND.CENTS. 2). OUr strong
int.rest in the sharing of resources and in the software
library concept biaaes us in the direction of syntax-ori.nted
naaing. Moat of the naIl.a of atoms in the libraries of the MU
environaent are ayntactic naaes such aa wS- (WStructureW),
-eLV· (-List of V.ctors-), and -eV/V4I.V4R- (·Vector
conaiating of two Vectora, the firat consiating of 4 Integers
and the s.cond of 4 R.al numbers-,. (This scheme is
elucidat.d a bit furth.r in the section on Autamatic
proqrUIIUng.) In 80IDe instances, it is advantageous to
incorporate .ome amount of aubatantive me.ning into a n_e, to
JIUlke the name somewhat ntic a. well as syntactic, but in
the ach.e being diBcu.aed, the ... ntic camponent is alw.y.
re.tricted to the field of infor.ation proces.ing and not
allowed to extend to truly sub.tantive application ar.... For
exaaple, weAV/VIUeIIIDBX.eVNIeDOCUMENT.NAME· is a po •• ibl. n_e
for a vector of two vectors of equal length, the first
consisting of integera repre .. nting indexes and the .econd of
strings representing docuaent ~.. HOw.ver, in the notation
scheme u.ed in MO, there i. a long liat of abbreviation., and
the exaaple would actually be -eAV/VNTeIx.-VNTeDH.IJAw• once
mentioned in a function, the vector thus identified could be
ref.rred to as just -A-, which i. in a sense the nUle of it.
naae. MUDDLE it.elf doe. not autoaatically recognize name
equivalenc •• of that kind, but it of course permit. two or
more ate.. to identify the s.e object, and concurrent u.e of
full and abbreviated naaes i. readily achieved in .peci.l
MUDDLE environments.

It is ea.y, a. the foregoinq ex.ples .uqqe.t, to
contrive a .cheae ao ca.plicated that no one but the contriver
will ever learn it. We are exploring •• veral po.sible
solutions to that probl... we have functions that analy.e
ca.pound naa.. into their ~nents and routine. that
recogni.e ca.pound naae. when a .ufficient number of their

-36-

PROGRAMMING TECHNOLOGY

components art;! specifiud in any order. 'i'he completion schem~
used in the CALICO command interpreter is of course
applicable. In MU there is a computerized flash-card learning
aid that makes the mastery of abbreviation conventions rather
painless, eVt;!n enjoyable. And there are name-transla"tion
functions that replace abbreviated name components by tht:ir
expi\nsions or vice versa. Indeed, for sinplc names, there is
a print mode that displays SUCIl names in full even though they
are represented in memory as abbreviations and a print mode
that does the converse.

lJith the facilities mentioned, we are beginning to
explore the feasibility of a system in which all the
frequently used software concepts have convention-governed
names and computer-processible definitions. The names will
serve as declarations, and both programmers and programs will
·know· or be able to figure out what they can legally 00 to
and what can legally be done by any named object. This of
course is just one approach. Another is to rely on separate
declarations and let objects be named willy-nilly. The
essential issue is not how to represent the distinctions: it
is that the distinctions be made explicitly and consistently
in a computer-comprehensible way and that they be preserved
throughout a whole system of software.

9. Documentation

In the early stages of the projec' I members of the group
viewed the preparation of documentatior with great disdain.
It was much mar'.' enjoyable and reinforcing to write and debug
programs than tu document them because documentation did not
play an essential role in the system building until the system
grew beyond the scope of unaided memory and informal
communication. Sometime in the second year, documentation
aids iJegan to be developed, the painfulness of adhering to
documentation conventions diminished, and the CALICO library
began to grow and almost automatically to achieve a reasonable
degree of consistency. The documentation aids constructed at
that time are mainly TECO macros. They will perhaps
eventually be replaced by an inteqrated CALICO documentation
subsystem, but the macros are sufficiently effective that all
that was urgently needed was organization and documentation of
them. That was accomplished this last year (Michener).

In MUDDLE, the situation is now about like it was in
CALICO tw~ years aqo except that, in MUDDLE, documentation is
inhibited by the fact that it is usually easier to ,.,rite and
debug a function than to document it. It may turn out to be
true that documentation does in fact have a smaller role to
play in MUDDJE than in CALICO, but there is no question that
d~~umentation (especially computer-comprehensible
dvcumentation) is central to the concepts of software
laboratory, software production facility, and automatic
proqraJlllling. He have therefore been exploring computer-aided
documentation in MUDDLE. The exploration relates to tha
definer function and the naming conventions mentioned earlier
and to a discussion in the section on Automatic Programminq of

-37-

PROGRAMMING TECHNOLOGY

how to specify what functions Qo. Inasmuch as the exploration
is in an early phase, those mentions may suffice for the
present.

10. Evaluation (Assessment)

Although computer aids to evaluation of software is an
important topic, we have just recently started to come to
grips with one small part of it. A basic measure of the value
of a software object is the number of times it is used. The
library-maintenance system provides for each subroutine a list
of all the subroutines that call that subroutine, and the
system derives from the set of such lists a list of pairs tha~
shows for each subroutine of the library how many callers it
has (Broos). That list of pairs is itself a fairly good
evaluation of the ·callees w• In addition, we have explored
the feasibility of tallying every call to every mediated
subroutine (Vezza), and we have a preliminary plan for a
timing s).lbsystem that will automatically compare various
versions of the same MUDDLE function (Licklider).

11. Understanding Programs ~ Modules Prepared ~ Others

Documentation, conventions, and the inher~nt clarity of
programming language. are of course basic to th1s topic, but
the topic is open to study and facilitation in it3 own right.
We have made just on. bcqinning toward such study: an
exp.riment in which .everal progr r. were asked to debug
and report on their debugging of a few briefly described
programs in which bugs were planted (Schweinhart). There
appear to be very great differences, .ven among programmers
who spend several hours a day at the console, in understanding
such programs well enough to debug them in any other way than
by rewriting them de novo. For some, evidently, it is much
easier to devise an algorithm than to figure out why a
slightly wrong algorithm do.sn't work. Perhaps the algorithm
does not have to be wrong at all: it may be that some people
are .imply very much better at software synthesis than at
software analysis.

ESP and GOT, mentioned earlier a. debugging tools, are
also effective aids in understanding oth.r people's programs.
The user-intervention feature of CALICO'S call-and-return
mediator is also an effective aidl it permits one to exeaine
the progress of a coaputation in step. corre.ponding to call­
to-call, call-to-return, return-to-call, and return-to-return
interval., and 80 to step through a ~r. complex program than
can be exaained instruction-by-instruction. In MUDDLE, we now
have two functions (Parrell, Petolino) that display evaluation
step by step. Brevity d ... nds that an example be
unrealistically simplel

Input I
Output I

<SET X <+ 1 <* 2 3»>'
<SET X <+ 1 <* 2 3»>
<SET X <+ 1 6»
<SET X 7>
7

-38-

PROGRAMMING TECHNOLOGY

12. Maintenance of Modules, Programs, ~ Systums

This area is tne focus of tilt! CALICO library-maintenance
programs (Broos) already mentioned several times. In MUUDLL,
the pertinent work concerns testing MUDDLF functions and
recycling defective library functions through the stepwise
procedure describt:d earlier (Licklil.lcr, H~Gath). Tne main
goal in this area is a system in which thure is an explicit
repr~sentation of all the software ramifications and
interactions. In such a system, a program will be able to
kno,'l that Changing module X will or may upset mo(lules Y and Z,
and in precisely what way -- and it will in some cases even be
able to make compens<'ting adjustments to Y and Z (and then
determine the ramifLations of those adjustmt.!nts). This is a
broad and deep subject, but valuable practical results have
already been obtained by simply autOMating the bookkeeping of
which modules refer to which other modules (Broos, Licklider).

It is widely understood from experience thut complex
software systems need to he exercised continually. Frequent
exercise seems to keep the bugs out, or at least reveal bugs,
motivate their elimination, and then reveal the bugs
introduced by the elimination. We have explored the idea of
systematically exercising software -- executing it under the
control of a program that knows what should happen and checks
that it does happen (Gray, Licklider). Systematic exercise
has revealed flaws inllnediately after library updates, when the
updating was still fresh in mind, that would otherwise have
gone undetected long enough to become difficult to understand.
\Je have some ideas about an exerciser that will not merely
conduct ·canned· tests but also devise new tests on the basis
of documentation.

13. Understanding ~ Process ~ Programming

It is very clear that many programmers can program well
but that few if any can explain how they do it. To develop a
basis for automatic programming it is necessary to find out.
To that end we have made a beginning on a MUDDLE subsystem
that will create an annotated record of what programmers do
(Licklider).

In this subsystem as it now operates, a record is made of
every object the MUDDLE interpreter readS, the time at which
the interpreter finshes reading it, every object returned by
the interpreter after evaluating what was read, and the time
at which the interpreter finishes the returning. To this
record are added, in their entirety (even if not so read or
returned) the definitions and documentation items provided
through the definer and also notes prepared from time to time
by the programmer to explain his motives and intentions. The
notes and documentation are crucial to intarpretation of the
records. Every 40 console interactions, therefore, th~
subsystem checks to see whether or not the programmer has
submitted tne required number/amount of notes/documentation.
If he has, he is al:owed t.o continue, but, if he has not, the

-39-

PROGRAMMING TECHNOLOGY

subsystem asks him to remedy the lack and cycles hiJII back through the request loop until he does so.

With the aid of his notes and documentation, a programmer can recall rather well what he did, and apparently also to a considerable extent why he did it, during a recent session at the console. It is difficult for another person to figure out exactly what happened, and more difficult for another person to get a good idea why, but it seems likely that the scheme can be developed into a facility for studying the process of programming.

We are quite aware, incidentally, that there are serious social implications in computer monitoring of human behavior. We do not propose to have the system monitor anyone's programming without his consent and his cooperation in interpreting the records.

D. COMPUTER I-lETWQJtKS

The work of the programming Technoloqy Division in the area of computer networks is focused on the AP~A Network. The work has shifted during the past year from development of software serving basic network functions to development and exploitation of the ARPANET as a virtual extension of the Dynamic Modeling System, as a pool of resources for use In computer-aided progra.ming, and as a communication medium. OUr main objectives in networking are to facilitate use of certain remote resources to such a degree t~at they appear to be integral parts of the OMS, to make a few of the subsystems of the OMS very conveniently available to remote users, and to advance the arts of person-to-person and program-to-program communication. Our interests are evolving in the direction of a ~oftware laboratory distributed among several network hoats yet functionally integrated and coherent.

Our Network effort has centered upon the developaent of: (1) effective network communication: (2) an experimental Virtual File Management System, (3) a network interface for MUDDLE, (4) programs for the automatic filing of data, collected by our SURVEY program, at the Oatacomputer (DC) and the retrieval of SURVEY data, (5) a NETWORK MUDDLE; (6) programa in CALICO and MUDDLE to facilitate use of the ARPANET; (7) measurement functions to ay,luate the performance of OMS network progr ; and (8) the ICCC Special Project Demonstration.

Before we proceed to a discussion of these main network efforts, three system related tasks that were completed .ost be reported. At the end of the reporting period, an experimental Server TELNET (Chan, Brescia, Bhushan) behaving in accordance with the new TELNET protocol was operational on OMS socket 69 (decimal). The NCP of the new model I~S (swapping system) and our HOST-IMP hardware interface were mutually modified (Brescia) to make thea coapatibl~, and additional lJCP calls were installed (Brescia) so that our sans-swapping ITS network software bec ... operational with a

-40-

PROGRAMMING TECHNOLOGY

minimum amount of modification.

1. Network Communication

t'le are well into the implementation of a unified
communication facility (Haverty, Bhushan, Br~scia, Vezza) for
both intra- and inter-system usc. t\le are providing a number
of facilitation functions, such as distribution by group name,
and deferred distribution to remote ARPru~rT hosts. One
important function will be to thread together communiques
whose content is pertinent to a particular subject matter and
provide an information retrieval system to facilitat~
extraction of information.

2. Virtual File Management System

A version of a Virtual File Management System (VFMS) (35)
was designed, simulated, and implemented (Seriff). The goal
of the system is to provide a mechanism whereby file directory
operations and file access operations are specified in a
uniform manner for all file systems on the ARP~~ET hosts that
possess a VFMS Server File Transfer Program (FTP) that
behaves according to the VFMS File Transfer Protocol.
(Currently the implementation is operational in the three ITS
environments at M.I.T.) Further, the design provides for a
virtual file dire~tory system that allows the names of files
from any number of hosts to co-exist in a single directory.
The VFMS maps ITS commands into host specific commands. The
file directory structure of the VFMS is patterned after the
MULTICS hierarchical file directory structure.

Currently, VFMS provides a capability to list a user
directory, print a file on one's console, copy a file from one
directory to another, append a file to a file, rename a file,
create a link, delete a file, create a split file (a virtual
file composed of constituent files that retain their identity)
and create and maintain multiple copies of a file on different
machines.

3. MUDDLE Network Interface

In keeping with the DMS philosophy of integrating
programming functions, such as editing, debugging, and
networking, into the programming environments of CALICO and
MUDDLE, we have recently added network primitives to the
MUDDLE environment (Reeve, Ryan). (Network primitives and a
USER TELNET existed in CALICO prior to the beginning of this
reporting period.) Addition of the primitives provided a
basis for a USER MULTI-TEUIET and USER MULTI-FTP facilities
(Scandora, Bhushan). Also based on these primitives were
three efforts described in greater detail in the next three
sections: the SURRET subsystem, the NETWORK MUDDLE
subsystem, and MUDDLE facilitation functions f~r the use of
subsystems at remote hosts.

The integration of networking functions into the major
subsystem programming environments is leading to the

-41-

PROGRAMMING TECHNOLOGY

implementation of programming conveniences for using remote resources on the ARPANET. These conveniences provide the user with a uniform view of many diverse systems and resources, and the presentation of that view is made in a manner that is consistent with what the user already knows about the OKS. The MUDDLe TELNET and FTP f·scili ties presently provide a convenient mechanism for accessing resources on the ARPANET without the need or bother of leaving the MUDDLE environment. Also, many of the programming conveniences that exist in the CALICO environment are appearinq in MUDDLE.

4. SURVEY

The SURVEY program collects data about ARPANET host status at 20-minute intervals. A host's status may be: host down, NCP not responding, initial connection aborted by foreign host, logger not responding, logger available, or undetermined. In addition, response time for a -request for connection- is collected for all hosts with status -logger available-.

In conjunction with the SURVEY program, w~ have completed the development of:

1. A service for sending SURVEY data.

2. Storage of SURVEY data at the Datacomputer without human ~ntervention.

3. A MUDDLE interface to retrieve from the Datacomputer ARPANET host status data collected by the SURVEY program.
A special ARPANET socket, socket 15 (decimal) at OMS, transmit. the most recently collected SURVEY data each time a connection to the socket i. e.tablished (Bhushan, Seriff). The data are formatted for use by an automaton. Connections are closed by OMS immediately after the data are transmitted. We plan to provide a similar service with a format suitable for human reading.

A cooperative project with Computer Corporation of America to store and retrieve SURVEY data with the aid of the Datacomputer was undertaken and ca.pleted this past year. The purposes of the project were: to determine whether the anticipated s data storage of the Datacoraputer could be made to appear to be an integral part of the OMS I to obtain some experience and competence with the Datacomputer and the Datalanquage, and to let u. act as guinea pig. for and friendly critics of the developing Datacomputer facility.
The project entailed the implementation of programs that transmit SURVEY data to the Datacomputer automatically (Bengelloun, Dhushan) and a set of MUDDLE functions that provide a facility for specifying retrieval commands with MUDuLE syntax and semantics. The programs that transmit the SURVEY data to the Datacoaputer attempt to do so after .ach measurement. If the transmis.ion ia unsuccessful, the data

-42-

PROGRAMMING TECHNOLOGY

art: stored loca.lly, ane. an att"mpt to trclil::i!.lit tIl", accuMulateu
Jata ic mad", at t,le n~xt measurl.:ment timt;. Thl..! MUDDLE
sUbsystem SURRl.,;T proviuus a facility for automatic connection
to a special socket at tile Uatacomputer, till.! gt:lluration of
Datalanguagc from r~trit:val commalld::; written in J.1UDDLt: sYlitax
and semantics, the transmis!iioll of a request for retrieval in
IJ<.ltalangugt: syntax ilnd :.H.:mantics, the arran'Jl!ml..!nt an..! disl'lay
uf tile rt.!tri~vt!J data in a form aPl'ropriatu for auman ViL!\ling,
anJ the arrangument of tile retrieved data in a form
appropriate for proccs!>ing uy MUDDLE fUllctiolls.

5 • UETIiORl" MUDDLI:

It is quitt! clear that in a het~rogent!ous lll..!twork
environment such as the ARPA UETWOR!{ tile modus operan..ii
currently employed by local users is tl~trt!mely cumbersome.
This is so because the <..liversity of host operating systems
would force a n~twork USer to employ many differellt operating
procedures in order to use, or even to explort!, tile full range
of rCSO',lrces offered by the network. It is not tlltJ employment
of diverse operating procedures that in an~ of itsulf causes
the main difficulty; it is having to learn diverse operating
procedures. If a us~r identifies a resource that exists at a
remote host on the network and that could help solve his
problem, it impedes ;lis progress if he must stop and lcarn the
idiosyncrasies ot tne operating system in which the id~ntifi~d
resource resid~s. His progress would be further impeded by
the need to learn the idiosyncrasies of editors, file transfer
mechanisms and other ancillary subsystems a~sociated with thE.!
remote operating system. Additionally, file storage
allocation must ut! obtained and file system conv~ntions
learned. Inst~ad of having to learn a lot of new proccJures,
a user would like to get on witil the business at hand, that
is, the application of the idtmtified resource to his proLlem.

It is not difficult, we have discovered, to make some
resources available dire:::tly to the ARPANE'l'. (By directly, we
mean that a user \-lho has general progrananing capabilities
elsewhere need only concern himself with acquiring k.nowledge
about the program he wisheS to use and not about our operatinq
system or ancillary programs.) Thus, the user is provided
with the semblance or beginning of a network operating system
environment. He have identified two OMS resources, MUDDLE and
the OMS IMLAC assembler MIDASI, that we believe are
potentially useful to the network community. A first pass
implementation of a UETWORK :1UDDLE (Bengelloull, Bhushan,
Vezza) is already operational and a means of proviJing a
NETI-JORI{ MIDAS! is being planneJ (Brescia, Vezza).

The UE'i'HORK MUDDLE facility will provide direct access to
MUDDLE from t:1C network. It will IJc ul:iable by both humans and
programs that exi:ot at remote hosts. In thib latter endeavor,
we are type coding all of MUDDLE's responses (Dengelloun).

The nETWORK "'UDDLE is operational on 0115 socket 73
(decimal) and provides a user with an environment in which ile
can perform almost all the operations that a local Dl1S user

-43-

PROGRAMMING TECHNOLOGY

can. The differences between the NETWORK MUDDLE environment and t:le normal !oIUDDLE dnvironment include I the UETWORK MUDDLE Joes not allo~., ei tiler output to Dl.fS secondary storage or input from secondary storage other than from the UETMUD directory, while the normal MUDDLE allows both of these operations.
These secondary storaqe restrictions at Dl-iS do not hamper the user because NETWOR1{ MUDDLE provides a capability to NFLOAD files from and to l-JPFILE objects to remote hosts, and other similar facilities are beinq added. The UFLOAD and NPFlLE commands accept arguments specifyinq source and target pathnames and aCcess privileges at remote hosts. Figure 1 is a diagram illustrating the logical connections that may exist for a user acce~sing NE~~ORK MUDDLE from a TIP. As indicated, more than one file transfer connection is allowed. This proviaes a capability for files to have in them references to other files that are to be inserted in the input stream at the point of reference. The recurrion depth is limited by the maximum number of simplex connections (16) permissible in nETWORK MUDDLE. (This is really a current ITS restriction on the number of software channels an ITS job may possess.) The input file to l~ETHORK MUDDLE can exist on any host computer on the ARPAlolET provided the belit has a file transfer proqram tlla t behaves in accordance with the standard file transfer protocol.

The hest method of illustrating NETWORK MUDDLE is by example. In the example presented below the Rremote host- is the DMS itself. We connected the CALICO USER TELNET via the neblcrk to the Dl4S NETWORJI: MUDDLE socket. We did this because it was convenient and because we wished to script the example (a facility existing in our CALICO USER TELNET, which files all terminal input and output). In the example we NFLOAD and NPFILE to a TENEX system at SRI-ARC. We begin by commanding our user TELNET to connect to socket 73 at OMS. The user's console input is underlined. Com.ents we have inserted are enclosed in quotes and prefixed by a semicolon. All lines beqinning with a three diqit integer are the remote host's server FTP responses. (In normal mode, these responses 1«)uld be suppressed and the console output would not be cluttered up wi th them.) Everytlling elae is NETWORK MUDDLE output.
lIC01~NECtion to host DM socket 73
completed. - -
MIT Dynamod System PDP-10
MUDDLE LISTENING-AT-LEVEL 1 PROCESS 1

<NlLPAD -MPPEX,TXT,l- -SRI-ABC- (-MIT-QMCG- Rpassword- -3-»' 300 SRI-ARC FTP Server 1.27.0.0 - at THU 9-AUG-73 lOa22-PDT 330 User name ~ccepted. Paasword, plea.e. 230 Paa.word OK. Send ACCOlnlT before writing any files. 200 Account command accepted.
200 Socket command accepted.
255 SOCK 3276932615
250 ASCII retrieve of <MIT-DMCG>MUDEX.TXT,l started. 252 Transfer completed.
-DONE-

-u-

/
/

/

/
/

/

ITS DISK
I . CONTROL

: PROGRAM \ 7 PROGRAM
I / .cJ~f~J "I (D!SK

~ \ PROCES '"
"
" " '\.

---LOCAL CONSOLE CHANNEL, TELNET CHANNEL OR FTP TELNET CONTROL. CHANNEL

---FTP DATA CHANNEL

---SIMPLEX DISK CHANNEL

o DECISION NODE

FIG. I NETWORK MUOOLE IN THE OMS

'tI

~

I
M
2:
G)

"i
to.!
n

I
C'l
0<

PROGRAMMING TECHNOLOGY

,- WE JUST LOAD~D FROM TUE NIC A FILE
tlHICli HAS A \·mO? COl~m, LJ:;''c'S TEST IT­
<WhO>1

TTY UNAME J.iAME
TOO llSB.SM DUMP
T05 SYS SYS

CORE
008
052

TOTAL lOX
010 13
119 32

DSI~ MSB IRSUPD 090 098 10
FREE CORE 018 OUT 126AL-DONE-

: -OK NO\'i WE WANT TO CllANGE THE COMlolAim i'lAHE TO LISTF AND
SEND IT aACK TO THE NIC-

<SET MUDODJ (SETG LISTF ,\"iH0?) >.
(SETG LISTF

tFUNCTIOH (-AUX- CH)
<SET CH <OPEN -READ- -TTY:.FlLE. (DIR)-»
<REPEAT () <PRINC <READCHR .CH '<RETURN»»
<CLOSE .CH>
-DONE-))

SNPFlLE -MUDEX.IXT,2- <CHTYPE .MUDOBJ FORM> -SRI-ARC->'
200 Socket command accepted.
255 SOCK 3276932614
250 Store of SMIT-DMCG>
MUDEX.TXT,2,P777752,A3, ASCII type, started.
252 Tranafer completed.
-DOi~-

, -NOU LET'S RETRI1::VE IT­
~~PLOAD -MUDEX.TXT 2- -SRI-ARC-

SOc et command accepted.
255 SOCK 3276932615
250 ASCII retrieve of SMIT-DMCG>MUDEX.TXT,2 started.
252 Transfer completed.
-DONE-
SLISTF>'

TTY UNAME Jl~AME
TOO MSB.SM DUMP
T05 SYS SYS

CORE
008
052

TOTAL lOX
010 13
121 32

DSU MSB IRSUPD 090 098 10
FREE CORE 012 OUT 117ALwDONE-
,-IN <UNSOAK> MODE, THE FTP REPLIES AND Ca~DS ARE HIDDEN.
IP AN ERROR RESULTS Itl FTP, MUDDLE'S ERROR PUNCTION IS
CALLED WITH THE FTP DIAGNOSTIC.-

Nl::TWORK MUDDLE is in a state of flux, it is changing
rapidly because it is still a new development. We are
imp1ementinq new cOlllD8nua to make the syntax and a_antics of

-46-

PROGRAMMING TECHNOLOGY

lu:nJORK MUDDLE uniform with that of i·1UDDLl::. Ill.!cause IlE'i'\IORK
:4UDDLE is changing so rapidly, tll~ auov~ eX<lmpllo! will in all
probaoility no longlo!r work by the time this report is printen.
liowl::!ver, if anyone wishes to try an examplu, af ter connecting
to the :IETWORK MUDDLE socket type

to obtain a set of instructions about an up-to-datl.! exam~le
that will work.

A discussion on the important topic of whether or not
such a service is practical given curr9nt network bandwidths
is defl::!rred to the section on Measurement of Perforti'ance of
OMS network Programs.

It has occurred co us that there may ue something to be
gained by merging the VFMS and NETWOru, MUDDLB. It would
provide a uniform user interfact:! to al!. files on the ARPJ'.NET
accessible to W:THORK MUDDLE. However, it would be yet
another set of conventions to learn and at present little
would be gilined because most users know the conventions
required by the host computers where their files exist -- and
tnat is what I~ETWORK MUDDLE requirl::!s as a pathname arguml::!nt.
In the future, as users become less cor,cerned about where
files actually eX1st, as files migrate to where storage
exists, and as mass storage becomes available 011 the ARPJ\NET,
it may be an attractive merger.

6. Facilitation Functions for Use of the ARPM1~f -------
A number 0: functions that facilitate the use of the

ARPA.~E·r for a DroSS user have been implemented in MUDDLE
(Saushan, Holman, hart, Scandora) and CALICO (Shushan,
Bressler, enan). These are intended to make the use of the
network, by a OMS user, as painless and convenient as
possible. Some examples of such facilitation functions are:
the "who" command in CALICO, which takes as an argument a host
name and returns a list of the users currently logged into
that host; and the "NLS" command in CALICO, which allows one
to type "NLS" and a password, at the appropriate time, and
after a short wait one finds himself connected to NLS at SRI­
ARC. There are a number of such facilitation features that
perform most of the login ritual on behalf of the user,
whenever he types a host name, so he doesn't have to remember
the rituals for each computer he may use. Some of them are
print, rename, copy, mail, delete, and list£. In addition to
performing the login function, appropriate TELllET modes are
set, i.e., character or line at a time, full or half duplex,
etc. (In the new protocol, the TELNET mod~s will be
nego tia ted.)

An InterEntity Communications protocol has u~~n developed
and programs behaving in accordance with the protocol have
been designed and implemented (Brlo!ssler, Chan). T.leSe
programs allow network users to link and communicate with each
other. Also, we are presently experilTlenting with a system

-47-

PROGRAMMING TECHNOLOGY

~lat allows NLS journal submission of ITS created files (Shushan).

We have experimented with some functions in MUDDLE that CJo beyond simple UE'n'lOR!(faciH tation. These functions provide invocation and use of programs at remote hosts in such a manner that they appear to reside on the D~S, that is to say, the programs are called without explicit intervention by a user. We have implemented the HUDDLE functions DIPP (Shushan), IIJTEG (Holman, Shushan, Vezza), and some other ancillary functions that call HACSYMA (MAC's SYmbolic
~~ipulation system) to perform symbolic differentiation or inteqra tion. We have looked into provif.ing calls to the CONSISTENT SYSTEM on MULTICS (Dehn, Vezza) and have some preliminary plans to do so.

The automatic call of proCJrams in remote hosts is illustrated with the aid of MACSYMA (comments are spaced over and preceded by a semicolon).

SCENARIO POR USING THE OIPPERENTIATE PUNCTIOt~ (VIA MACSYMA)
MUODLE 42 IN OPERATION
<lLOAI> -AKB. NAtlTNE- >f , PLOAD from file.
-DONE-

gMACSYM l>f This gets a MACSYMA at either MIT-MATHLAB or MIT-AI and tt.e arqument -1- tells proqram to supress remote ca.puter's responses.
PLEASE BE PATIENT, MACSYHA LOADING MAY TAJ(E TIME MACSYMA AT MIT-MATHLAB
T true response fr~ proCJram, false if

both AI and KATHLAD are down
<DI" -XA3+4*XA2+1·X->t , to differentiate an expression in

strinCJ form

The proqr.. returns answer in strinq
fora, caeputation is done by IlACSYJO.
at lolATHI.AB.

to differentiate an
expres.ion two t1.es
with respect to X

-12·XA2+42*x+2
SDIS>t , to disconnect from IlACSYMA

-CONllECTIOUS CLOSED 1IOW-

The lIIlpl_entation of the DIP? and INTEG functions has made us acutely awar~ of one interestift9 fact. Basically, subsyst ... are written to interface to huaans and their interfaces are not partlcularly suited for autollata. To illustrate what we .. an, l&t u8 suppose that our OMS progr ..

-48-

PROGRAMMING TECHNOLOGY

has passed MACSYMA a function to integrate anu is ~xpecting to
receive the int(;:qrated function back. But, I;<..;for", ·1l\CSYj, •. \
f'·.:lisiles the integration, the ons program r(!ceives from the
remote host, -System going down in 9:59-, or -Fatal error-, or
anyone of several less nocuous statements. Of course there
is also the hoped-for possibility that the answer will be
forthcoming, we must be able to recognize it also. How can
programs analyze and take correct action on such replies?
(The system-going-down message has interesting side effects
suppose the system is to go down in about an hour and the task
to be run takes well over an hour, on the average, to
complet~, clearly running the task is quite likely to prove
futile.) Quite clearly, a program capable of handling all
possible free format respons~s is beyond our current
capability. A protocol specifying response types would in
fact make message type recognition much easier. A simple set
of types would bel expected system lifetime, fatal error,
error in server process input stream, informative information
-- something the user process can store for later perusal by a
human, -atc.

In conjunction with our HE'l'WORK MUDDLE effort, we are
currently buildir.g a taxonomy of NETWORJ(MUDDLE responses.
'1'he responses are being type coded. We hope to be able to
collect them into categories that will enable an automaton to
determine w!lether it is prudent to continue, or cause an
interrupt to a higher level at the local host, or take other
desired actions.

7. !!!!.urement of Performance 2! ~ Network Programs

We have made some measurements on the performance of
several of our network programs in order to obtain an
understanding of the breadth of possib:lities in us~~g the
A!~ANET and also to discover whether our programs aTE' qrossly
lacking in terms of performance. The measurement effort has
provod quite fruitful: in a number of instances minor if not
trivial modifications to network proqrams have increased their
performance with respect to some measure by an order of
magnitude or more. A measurement facility associated with the
FTP (Bhushan, Chan) was implemented and since Pebruary has
intermittently monitored file transfers to and from the DMS.
A sw.ary of the results is shown in Table 3. The
measurement. were taken on 265 file transfers during the
period February 1973 to July 1973. In all 53.9 million bits
were transferred. The OMS was a sender or receiver in both
user and server mode, and both image and ASCII files were
trarsferred. -Data recorded- distinguishes between whether
the DMS functioned as a sender or rec:ei'let", user or server,
and whether image or ASCII files were transferred.

Prom the data in Table 3 it is clear that we are not yet
operating near thE network bandwidth. The raw data show that
bandwidths of better than 27 kilobits per second have been
achieved, and that large files are transferred at
significantly higher transfer rates than smaller ones. The
observations collected thus far indicate that data transfer
rates depend strongly on the input buffer aize.

-49-

PROGRAMMING TECHNOLOGY

'l'ABLE 3. MEASURE'tEnT OF THE nitS FILE TRANSFER PROGRAMS

Transfer mode

Server Sending Data

Server Receiving Data

User Sending Data

User Receiving Data

ASCII B mode transfer

• Data Bits
Transferred

Megabits

3.B

19.B

8.7

21.5

3.3

36 bit image mode transfer 50.5

Combined Data transfer. 53.9

Data 'l'ransfer
Rate

Bits per
Second

7504

7441

7982

8839

2435

9472

8042

CPU-tiJlle
Secon1sl
HegaLit

2

1

2

5

12

2

3

An important question iSl given the data transfer rates
achievable on the ARPANET, are services like the MUDDLE
NETWORK practical? We think that BOae such services are in
fact practical, mainly because many programs perform
computation on the input data stream which has the effect of
drastically limiting the data tran.fer rate between secondary
and primary memory. Taking the example of a MUDDLE FLOAD, the
file i_ evaluated by the interpreter as part of the PLOAD
process. Same simple measurement. (Vezza, Bpngelloun) made
on the MUDDLE FLOAD function indicate that one can expect
(currently), for typical !(UDDLE text files, effective data
transfer rates (fully evaluated) between primary and secondary
memory of about 3-10 kilobits/second. (The 3 kHobits/second
is more typical than the 10 kilobits/second.) This data rate
can be and is achieved by data transfers on the ARPANET.

A RESTORZ or a SAVE in MUDDLE (which restores or save. a
MUDDLE environment) achieves ~ much higher data transfer rate
than a FLOAD or PFILE. Under typical load conditions, one can
expect effective data tran.fer rates between secondary and
primary memory of 36 kilobit_I second. This is clo.e enough to
the current maximum achievable network bandwidth that
restoring or saving environments in NETWORK MUDDLE will be
slower than in MUDDLE. However, this is done infrequently -­
typically at start up and A couple of times during a con.ole
seSSion, and restoring even large file. such as the MUDDLE
compiler is not likely to take more than 2 or 3 minutes.

B. !£££
A highlight of the early part of the reporting period was

the Special Project Demonstration of the International
Computer and Ca.aunication. Conference (ICCC) held in

-50-

PROGRAMMING TECHNOLOGY

Washington, D.C. Several members of th~ progranuning
Technology Division staff (Vezza, 3husllan, Bressler, lIaverty,
~euling) helped organize and prepare scenarios for the Special
Proj~ct Demonstration. ~ight members of the Division attended
the Conference (Vezza, Bhushan, Bressler, havt:rty, Lllbling,
Licklider, Reev~, Seriff) to help set up the equipment and
demonstrate resourcl::s on the ARPAllET. Three others (Brescia,
Chan, Cutler) provided technical backup to insur~ the
availauility of the OMS.

E. AUTOMATIC PROGRAMMIHG

The term "automatic programming" is ueing used these days
both (a) as a general "chapter heading" to cover a wide ranae
of approaches to improvement of thE.! preparation of software­
and (u) as a specific identifier for (the development of)
programs tnat write programs with little or no help from human
beings. The earlier section on "Computer-Aided Programming"
falls within the general sense of "automatic programming", but
in this section tl10 more specific sense is intended. In the
Programming Technology Division, the level of effort
contriuuting to this area is small, and the work itself less
advanced than that of the Automatic ProJramming Division.

1. Automatic Composition of Functions from Modules

A fundamental and appealinq idea in aut.omati.c programming
is to provide an automatic programmer with a problem
specification apd a library of program modules and to have the
automatic programmer select the required modules and compose a
program that will solve the specified problem. An advanced
ve=sion of such an automatic programmer would involve a
problem-acquisition subsystem, and its modules would include
generators of code as well as ·canned" macros, functions, and
subroutines. We are thinking about such matters and exploring
some of the proLlems involved, but most of our tangible
results thus far pertain to a quite simple system, an
automatic composer of MUDDLE functions dealing with a very
restricted domain.

LAP (Little Automatic Programmer) receives its problem
specification in the form of a sample input-output pair such
as

IN->(A BCD E F G H I J K L)

OUT-> «A C E G I K) (8 D F II J L»

That pair is intended to challenge LAP to find or compose a
function that will put the odd-numbered components of the
value of its argument into one list and the even-numbered
components into another list and then return a list consisting
of the two lists in sequence. (There are other possible
interpretations of the sample pair, of course, but al~ost
everyone sees the intended interpretation first, and so should
an automatic programmer.) The symbols employed by the
"client" in setting up the problem specification (the sample

-51-

PROGRAMMING TECHNOLOGY

pair) are not restricted to letters. They could be -JOE-,
-HILL-, -PETE-, ••• cor w217-, -327-, -182906-, ••• They serve
only as names.

~he module library of LAP consists of MUDDLE functions.
Because LAP runs slowly and is used only as an exploring tool,
not as a serious programmer, the library is usually restricted
to about a dozen functions, but in principle there is no limit
to its size.

The operation of LAP is illustrated by the script
reproduced below. For this run, the library included 15
module~, three of which were;

REVERSE

ROTATE.RG

ROTATE.LF

l:_verses the order of the
components of a list

rotates the components of a list
one place to the right

rotates the components of a
list one place to the left

The sample input-output pair was

IN->(A BCD ErG H I J K L)

OUT-> «B D r H J L) (C E G I K A»

That pair was intended to convey to LAP a request to find or
campose a function that rotates the components of the input
list one place to the left and then subdivides the list into
two parts, one containing ~le odd-nuahered members and the
other the even-numbered members. The veraion of the LAP in
this illustration is 6. It explain. what it is doing as it
runs.

Lap.6 Script

As I understand the probl .. , I am to find or synthesize a
MUDDLE function that will convert inputs like the sample input
into outputs like the sample output. The sample input and
output are;

<SET SNPL.IN '(A BCD E F G H I J K L»

<SET SMPL.OUT • «B D F H J L) (C E G I K A»>

I shall try to find or synthesize a function that will .eet
the requirement. As I werk, I shall display some of my
intermediate steps. At certain points, I shall have a lot of
processing to do, and at those points I shall fall silent for
what will probably seem to be quite long intervals. My first
step is to describe the s.-ple input-output pair with the aid
of descriptors. The reason for doing so is that I want to be
able to select a _all, pertinent part of ray data base in
which to search for a function that will effect the required

-52-

PROGRAMMING TECHNOLOGY

pair) are not restricted to letters. They could be "JOE",
·HILL", ·PETE·, ••• or "217", "327·, "182906", ••• They serve
only as names.

~he module library of LAP consists of MUDDLE functions.
B~cause LAP runs slowly and is used only as an exploring tool,
not as a serious programmer, the library is usually restricted
to about a dozen functions, but in principle there is no ltmit
to its size.

The operation of LAP is illustrated by the script
reproduced below. For this run, the library included 15
modules, three of which were:

REVERSE

ROTATE.RG

ROTATE.LF

reverses the order of the
components of a list

rotates the components of a list
one place to the right

rotates the components of a
list one place to the left

The sample input-output pair was

IN->(A BCD E F G H I J ~ L)

OUT-> «B 0 F H J L) (C E G I ~ A')

That pair was intended to convey to LAP a request to find or
cOlllpose a function that rotates the components of the input
list one place to the left and then subdivides the list into
two parts, one containing ~le odd-numbered members and the
other the even-numbered members. The version of the LAP in
this illustration is fi. It explains What it is doing as it
runs.

Lap.6 Script

As I understand the problem, I am to find or synthesize a
MUDDLE function that will convert inputs like the sample input
into outputs like the sample output. The sample input and
output are:

<SET SNPL.IN '(A BCD E F G H I J ~ L»

<SET SMPL.OUT '«B D F H J L) (C E G I K A»>

I shall try to find or synthesize a function that will meet
the requirement. As I work, I shall display some of my
intermediate steps. At certain points, I shall have a lot of
processing to do, and at those points I shall fall silent for
what will probably se .. to be quite long intervals. My first
step is to de.cribe the sample input--output pair with the aid
of descriptors. The re.sor. for 4oin9 so 1s that I want to be
able to select a ... 11, pertinent part of ~ data base in
which to search for a function that will effect the required

-52-

PROGRAMMING TECHNOLOGY

transformation or for component functions out of wnich to
synthesize such a function. :1y second step is to translate
the sample input-output pair into a canonical form that is
independent of the particular symLols used in th~ sample pair.
This step takes me quite some time. Ililcn I havL completed it,
I shall display the canonic input and output.

<SET INPUT '(I 234 5 678 9 10 11 12J>

<SET OUTPUT '«2 4 (j 8 10 12) (3 5 "7 9 11 1»>

My third step is to 3ubstitut~ for tilt! canonic forms of tne
sample input and output another form that is similar to an
outline. In this form, there is a header, which I shall not
explain here, and a lJody. The lJody consists of a list of
positions and a list of the canonic symbols that occupy t~ose
positions. As soon as I have made the outlines, or 'inlines',
as I call them (because the elements of the component lists
are 'in line' in their lists rather than being paired with
corresponaing elements as in an ordinary outline), I shall
diFplay them.

<SET Ill. ILl~
• «100 1)

«1 2 3 4 5 6 7 8 9 10 11 12)
(1 2 3 4 5 6 7 8 9 10 11 12»»

<SET OUT. ILN
, (100 2)

«(101 102 103 104 lOS 10~ 201 202 203 204 205 206)
(2 4 6 8 10 12 3 5 7 9 11 1»»

That concludes my preamL1e. Now I silall go into the main
business of finding or synthesizing the required function.

EHTERmG lIP. 6. FROM I.£VEL 0

<SX!T :U::VEL '1>

:~ow I shall look in my data base for a function, already
prepartld, that will mt:et the requirt:ment. I shall place on a
pushdown list the names of the functions I tlxamine. The
pushdown list is called 'PDL'. I shall prime it with the
symbol 'ZZ', uut that symbol will almost immediately be
removed in favor of the first trial function name.

<SET POL '(ZZ) >

Next, I shall find the output inline that would be yielded by
each trial function. That output I Shall call 'OUT.IU~.'
(with a period on the end). I shall compare OVT.ILll. with the
desired output 'OUT.IU~· inline, and, if they match, I shall
conclude that I have discovered a rtlady-maue function that
will meet the requirement. If no trial output matches the
desired output, I shall move on to try to synthesize a
tunc~ion out of available component functions.

-53-

PROGRAMMING TECHNOLOGY

<SET I '1>

<SET PDL '(IS.MOD.2»

<SET OUT.lLN.
, «100 2)

«101 102 103 104 lOS 106 107 108 109 110 111 112)
(1 2 3 4 5 6 7 8 9 10 11 12»)~

<SET OUT .lLl~
, «(loa 2)

«101 102 103 104 lOS 106 201 202 203 204 20S 206)
(2 4 6 8 10 12 357 9 11 1»»

Several unsuccessful attempts omitted here •••

DID NOT PIND PUNCTION THAT rILLS THE BILL SO WILL
TRY TO SYNTHESIZE REQUIRED FUNCTION PROM COMPONENT FUNCTIONS

!ty approach, now, will be to select tentative 'first'
functions and then, for each first function, to place 'second'
functions in tandem, one at a time, to create a new, compound
function that may meet the requirement. I shall test each
tandem pair made with first function I • 1 and, if none is
.atisfactory, try another first function I - 2 and yo through
the list of possible second-functions again. The f rst
function will be the inner function and the second function
will be the outer function in a tand_ such .s I

<DEFINE ALPHA (S) <SECOtfD.PUHCTIOR <FIRST.FUNCTION .S>>>

<SET I '1>

<SET PDL '(ROTATE.LF»

<SET OUT.ILN.
, «(laO 2)

«(101 102 103 104 lOS 106 107 108 109 110 111 112)
(1 2 3 .. 5 6 7 8 9 10 11 12) »>

EN'l'ERING AP. 6.1. PROM LEVEL 1

<SET LEVEL '2>

<SET POL '(n IS.MOD.2»

<SET J '1>

<SET PDL • (IS.MOD.2 IS.MOO.2»

<SET IN.ILN
, «(lllO 2)

«101 102 103 104 105 106 107 108 109 110 111 112)
(1 2 3 .. 5 6 7 8 9 10 11 12») >

(SET XP.ILN.
'«(100 1) (100 2»

-54-

PROGRAMMING TECHNOLOGY

«1 2 3 4 5 6 7 8 9 10 11 ~2)

(101 102 103 104 lOS 106 107 108 109 110 111 112»»

<SET OUT.ILN. 'tFALSE (»

<SET 00'1'. ILH
, «100 2)

«101 102 103 104 105 106 201 202 203 204 205 206)

(2 4 6 8 10 12 357 9 11 1»»

<SET J '7>

<SET POL '(/S.MOD.2 ROTATC.LF»

<SET IN.ILN
• «100 1)

«1 2 3 4 5 6 7 8 9 10 11 12)
(2 3 4 5 6 7 8 9 10 11 12 1»»

<SET XF.ILN.
1« (loa 1) (lao 2»

«1 2) 4 5 6 7 8 9 10 11 12)
(101 201 102 202 103 203 104 204 105 205 106 206»»

<SET OU'l'.ILN.
• «lOa 2)

«101 102 103 104 lOS 106 201 202 203 204 205 206)

(2 4 6 8 10 12 3 5 7 9 11 1»»

<SET OU'l'.ILN
1«100 2)

«101 102 103 104 105 106 201 202 20) 204 205 206)

(2 4 6 8 10 12 3 5 7 9 11 1»»

LEAVING AP. 6. BECAUSE HAVE FOUND nEEDED FUNCTION

I think I have a function that will fill the bill. It ist

<DEFINE AP.RESULT (8) </S.MOD.2 <ROTATE.LF .S»>

TO te.t the function, I ahall apply it to the sample input and

see whether or not it yields the sample output that you qave

me. If the fune;tion I came up with turns out not to be

applicable to the input, a MUDDLE error will result, and
MUDDLE will be in its listening loop. If my function is

applicable, I shall display the .aaple input, the ... ple

output you g6ve me, and the output produced by (result
returned by) the function. Yes, it checked.

<SET SMPL.IN '(A BCD E F G H I J K L»

<SET SMPL.OUT I «B 0 F H J L) (C E G I K A»>

<SET TEST.OUT '((8 D F .~ J L) (e E C: I J(A»>

END OF LAP. 6 SCRIPT

-55-

PROGRAMMING TECtINOLOGY

An inherent Anu essential difficulty in automatic
C'OI'lpc •• ltion of fur.;:t~.ol1S from modules is delimitation of the
search space. The procedure built into LAP is primitive: (a)
make a few measur .. ents of the sample input-output pair, (b)
derive descriptors -- just five of them in the case of LAP.6 -
- from the mea.ures, (c) ca.pare thos. descriptors with the
descriptors associated w~th each function in the data base,
(d) select, for the subset of the library to be searched,
those functions whose de8criptor patterns match the pattern of
the .-.ple-pair descriptors, and (e) search the subset
exhaustively. A. illu8trated, the search is conducted in
phases I first a search for a single function that will aeet
the requir ... nt, then a .earch for a pair of functions, then a
search for a trio, and 80 on. If there are M functions in the
selected sub.et, and if the search i. It.ited to single8,
pair., ••• , and N-tuples , the worst case involves examining
M + M + ••• +MN function.. How feaaible that is depends, of
course, upon the cost of ex .. ining a typical function, but
more cruci.lly upon the values of M and N.

To limit the co.t of .x .. ininq a typical function, LAP
was de.iqned not actually to apply a function to the sample
input and t •• t for a match to the • .-ple output but, inste.d,
to de.l with aurroqate. of function., as illu.trated in the
.cript. LAP deals with structures called -input outlines-,
-transfer outlines-, and -output outlines-. These structures
abstr.ct fram inputs (arquaent.), functions, and outputs
(result.) the information that pert.ins to the subject of
format with which LAP i. concerned. In .ost instance. it is
f.r le". tiae-consuainq to apply a tranafer outline to .n
input outline .nd t.st the r.sulting output outline than it is
to apply • function to an argument and te.t the re.ult.

In ord.r to restrict H, the .i.e of the aearched .ub.et
of the libr.ry, it is desirable to have good procedure. for
.electing the aubset. At pr •• ent, LAP has only token
procedures. Some of our current exploration of ideaa about
the .attar are de.cribed 1n the n.xt aeetion.

2. How to Describe What Functions Do -- - --
It is •••• nti.l both ••• b •• i. for r.~r1eval of library

functiona, a. discu.sed earli.r, and a. a basis for .utoMatic
progr...ull9, as discus.ed 1n the preceding .ubsection, to be
able to describe wbat specific functions do wh.n applied to
ar,-nta. Th •• ubj.ct is d •• p, .04 the d.pths .r. full of
difficulti.s, even ~po •• 1bilities. It 1. clo.ely related, of
cour.e, to the subject --. indeed, part and parcel of the
.ubject -- ot apeelfyinq whAt it is one want. a functiOn to do
when he requests a library or an auto.atic proqrammer to
provide the functions. The technique of .pecifying by •• ple
input-output pairs 1s ••• n to be sev.rely ltmited when studied
in any d.pth, but in fact it i. neverthele.. a very u •• ful
technique and a technique frequently -.ployed in ca..unication
between huaan proqr-.rs and their elienta. OUr approach to

-56-

PROGRAMMING TECHNOLOGY

the behavioral description of functions is, in n similar
spirit, to see how effective descriptions can ~~ in practic~
and not to despair at the first appearance of an infinit~ set.

The descriptions with which we are currently working go
only a little way u~yond the descriptions of CALICO
subroutines mentioned earlier. The current d~scriptions
include I

1. Types ~nd structures of arguments.

2. Other A priori objects (than arguments)
upon which behavior of function depends.

3. Type and structure of result.

4. Other ~ ~eriori objects (than result) that
may be affected by application of function.

5. Relations between" 3 and 1 and 2.

6. Relations between 4 and 1, 2, and 3.

7. Descriptors.

8. Cateqory.

9. Functions that may be called
by this function.

10. Library functions that call this function.

11. Atoms in this function that have global
values that are not functions.

12. Atoms in this function that have local
values.

In connection with items 1, 3, and 5, we are developing a
language for description of structures and declaration of
types. Let it suffice here to give the terms and three
examples of expressions in a part (ALPHA) of the language. In
each example, the description is qiven first in the
description language and then in a more conventional notation.
Brief explanations follow the trio of examples.

-57-

PROGRAMMING TECHNOLOGY

a, ••• ,z,

A, D, C, D

E

F

G, Ii

I

J, K

L

M, It

o

P

R

s

T

u
V

w

x, Y, Z

• (period)

/

ItO'1'ATION

}

• (center dot) or }

(vertical bar)

OF DESCRIPTION LANGUAGE ALPHA

General name.

FORM

Variable intaqera

INTEGER

Variable (index) inteqers

LIST

COnstant inteqar.

OBJECT

ATOM

QUAlnITY (numeric)

REAL

STRUCTU~

STRING

UVECTOR

VECTOR

BOOLEAN

Variable real numbers

Separator (.... level)

Separator (90 down one level)

x..ft arrow (re.ult from arquaent)

separator (t:oqqle. enter/leave ALPHA)

-58-

PROGRAMMING TECHNOLOGY

1. -SIS • •• 0, .. ,] •••
0N2 ••• 0NM) 1

N

2. -VAil/AL3E.BU4I [(r., E2 E3) 1[6 3 2 151]]

3. LAL/bLN*GE_SAB/ASC. BStljSGE

((el C2 Cm) (E, 1:;2 ... BN
\. ..,. ! \..

'V
,

A b

((Cl e2 Cm) «E'1) ... E 12 ••• E 'G,
(J~Nl EN2 ••• ENG ») , N ,

" ,
A "V

B

The first example describes a structure (i.e., any
structured MUDDLE object) consisting of any numLcr of
structures consisting of any number and kinJ of oujects.

The second example describes a vector consisting of two
components, the first being a list of three (unstructured)
elements and the second being a uniform vector of four
integers.

'l'he third example describes an operator that accepts the
structure described by the rignt-hand side and returns the
structure described by the left-hand side. The former is a
structure consisting of two components, A and n, A being a
structure of components C and B being a structure consisting
of U structures, each consisting of some numbor G of elements
-- with G having possibly N different values. The latter is a
list of two components, A and b, A being the same as on the
right-hand side and b being a list of G, + G2 + ••• +GN
(signified by H*G) elements.

This is not the time to explain in detail tht> language,
which is Changing in the light of experience, but perhups the
illustrations will convey an idea of the objective: a compact
nctation for dealing with complex structured objects. A part
(BETA) of the language not illustrated includes a much larger
vocabulary of terms. Another part (GAMMA) is a set of default
conventions dealing with relations between left-hand and
right-hand sides of operator descriptions. We think that it
will be possible to incorporate such relations into the
descriptions in the most important and prevalent instances
without significantly complicating the language. For example,
3 can be interpreted as implying that the elements E of the
result are precisely the elements E of the argument, all
arrayed in order in a single list instead of being subuivided
into N substructures.

The most difficult components of the description of a
function, it appears, are items 5 and 6:

S. Relations between result and arguments a;.d
other a priori objects.

-59-

PROGRAMMING TECHNOLOGY

6. Relations hetween a posteriori objects
(other than result) and arguments, other a priori
objects, and result.

We have exploreu several approaches and are developing a
system that incorporates the following;

a. Use of a simple f4UDDLE function as (part of)
it. own descriptio~. E.g., where wG w is
wGREATERw, wL w i. wLESS-, and ---- is
-UUMERICALLY • EQUAL- ,

<DEFINE G--? (01 Q2) <NOT <L? .Ql .02»>

b. Use oi a s~pler but less efficient MUDDLE function
as (part of) the description of a more complex but
more efficient MUDDLE function that exhibita
the same nontemporal behavior.

c. Use of one or more sample input-output
paira, as in LAP.

d. Use of the language ALPHA.BETA.GAMMA,
deacribed earlier.

a. Statement in a alightly modified MUDDLE of what
ia true of the world after the function has been
executed.

f. Description in English, as terse as possible.

To expand slightly on e, consider a simplified version of
the function INCR:, one that aecepts as it. argument an ato.
that has a local value, returns a number one greater than
that value, and leave. the atom pointing to the resulting
value. One can take care of the result by specifying that it
is the as would ~ returned by the (already described)
function 1.GR. To describe the side effect, the fact tnat the
atom (call it A) now point. to a new (incremented) local
value, however, it is neces.ary to write aomething like.

<TR <-.? .A <1.GR <HOLD .A»»

Tllat expresaion is interpreted by a aetllfunction that
Bvaluatea tne HOLD, then executes INCRI, and then ovalutea the
r ... inder of the description. The -TR- r.-fer. to a function
tnat can return -true- or -fal.e-, and i~ aaserts that -TR­
will return -true-. Thua the deacription says that lUCRI
returns a value one greater than the local valv.;! originally
pointed to by A and that, after execution, A pointa to that
lat~r local value.

The approach juat illustrated ia deri\ed, of
prograa verification. It appears that it w111 be
perhaps les. ooaplicated, in proqr .. description.
latter ar •• , co.plexitiea arise, but they se .. to

-60-

course, froJII
ua.ful, .nd
Even in t11.

be

PROGRAMMING TECHNOLOGY

tractalJle. One writes a set of ~UDDLL functions, whicil need
not be efficient, to test aspects of the state of t;l~ world.
To describe a given function, then, he configures some of the
test functions into a single compl~x test and asserts ~n of
its result. In dcscriiJing d~pcndencies of tile ~ posteriori
situation upon the a priori situation, of courst::, t.IC HOLD
function plays an essential role.

-61-

PROGRAMMING TECHNOLOGY

REFERENCES

1. Brco8, r-lichael S., -Illplementation of the VECTOR
Data Type-, SR.l9.l2, April 1973.

2. Burmaster, D.E., Karolyn Martin, and J.C.R.
Licklider, -Convention lIz Standard. for Listingsz
OVerview-, GA.Ol.09.00.

3. Cutler, Scott E., ·Computer Aided Evaluation and
Design of Feedback Sy.tems-, S.B. and S.M.
The.i., Departaent of Electrical Enqineering,
M.I.T., June 1973.

4. Daniel., Bruce, and Ed Black, -MUDDLE Graphic.
User'. Manual·, SYS.ll.04.

5. Uaniel., Bruce, ·MUDDLE Micro-Manual-, SYS.ll.Ol.

6. Data Type. SpeCial Interest Group, ·Data Types for
the Dynaaic ModelinC! Syst .. -, Kay 1972 (Memo).

7. Galley, Stuart W., -Debugging with ESP -­
Execution Simulator and Pre.enter-, SYS.09.0l.

8. Haverty, Jack F., -OVervi.w of Data Type.-,
SR.19.l0.

9. Haverty, Jack F., -x.plementation of the String
Data Typ.-, SR.Ol.Il.

10. Haverty, Jack F., J.ff Harri., and David Lebling,
·~l ... ntation of the Array Data Typ •• , SR.19.O'.

11. lIughett, Paul w., -Influ.nce Net •• Mapping the
Structur.ot a Proc ••• ·, S.B. and S.M. The.i.,
Departaent of El.ctrical Engineering, M.I.T.,
June 1973.

12. BU9hett, Paul w., and J.C.R. Licklider, -Conven­
tion lIz Standard. for Listings. Organization
of the Standard.·, GA.Dl.D9.01.

13. Knight, Francea, ·Convention III Li.t of conven­
tion II Docuavnts-, GA.Ol.OD.

1'. Lablinq, P. David, ·Printing StaDdard Data Type ••
DA'fCRP and DATPItT-, S~.U.ll.

15. Licklider, J.C.R. , and Karolyn Martin, -Conv.n­
tion III OVervi.w of Glo •• ari •• ·, GA.Ol.02.00.

16. Licklid.r, J.C.R. and Karolyn Martin,
·Convention II I Glo •• ary of Stan4ar4 Rotation-,
GA.Ol.02.01.

PROGRAMMING TECHNOLOGY

17. Licklider, J.C.R., an ... I,arolyn 1~artin, "Conven­
tion IIa Glossary of Standard 'l'crms·, r,A.Ol.02.02.

18. Licklider, J.C.R., and Karolyn Martin,
"Glossary of Abbreviations and E~pansions",
GA.Ol.02.03.

19. Licklider, J.C.R., "Convention II~ StanJ.ard MSR
Headers, Data-Set Headers, and SDAT/USDAT Triads",
GA.01.03.

20. Licklider, J.C.R., "Convention II: Data Types",
GA.01.04.

21. Licklider, J.C.R., ·Convention II: Stanuards for
Listings: Remainders", GA.Ol.09.03.

22. Licklid~r, J.C.R., "Convention II: Subdivision of
Packages", GA.Ol.ll.

23. Licklider, J.C.R., "Convention II: DSRs, QSRs and
RSRs", GA.Ol.12.

24. Licklider, J.C.R., "Convention II: rUscellaneous
Update Information", GA.0l.14.

25. Licklider, J.C.R., ·Convention II: Design of Data
Sets", GA.OI.lS.

26. Licklider, J.C.R., "Convention II: The Data System",
GA.Ol.16.

27. Liu, Mark II., "DETAIL: A Graphic Debugging Tool",
B.S. Thesis, Department of ElActrical Enqineering,
M.I.T., February 1972.

28. Martin, ><arolyn, "Convention II: Standard Format
for DG system Documents·, GA.Ol.Ol.

29. Martin, Karolyn, ·Convention II: Standards for Naming
Files", GA.Ol.OS.

30. Michener, James, et aI, RFC '493, "Graphics
Protocol", NIC .15~5B.

31. Pfister, Greg, "A MEDDLE Manual", SYS.ll.02.

32. Pfister, Greg, "A MUDOLL Primer?", SYS.ll.01.

33. Reeve, Chris, "ISR, MSR, OSR, RSR and DS Hacros",
MCR.Ol.04 (Draft).

34. Reeve, Chris, ·Convention II: How to Use
MACRO TS to Confo~ to Convention II", GA.OI.O£.

-63-

PROGRAMMING TECHNOLOGY

35. Reeve, Chris, Marty Draper, D.E. Burmaster,
and J.C.R. Licklidur, -Convention III Standards for
Listings I Listing Abstracts-, GA.Ol.09.02.

36. Reeve, Chris, and J.C.R. Licklider, ·Convention lIa
How to Take the First Step into the Hew
\lorld of CARI:;l>L-, GA.Ol.13.

37. Reeve, Chris, -Implementaion of Location­
Insenstive SRS Using the OFFSET
Pseudoinstruction-, GA.Ol.17.

38. Reeve, Chris, -Takinq the Second Step into the
t-Torld of Pure DYNAL-, GA.Ol.18 (Draft).

39. Seriff, ~arc 5., ·Virtual File Management Service for
the ARPA Iletwork·, S.M. Thesis, Department of
Electrical Enqineerinq, M.I.T., June 1973.

-64-

1.

2.

3.

PROGRAMMING TECHNOLOGY

PUBLICATIONS

Black, Edward H., "Computer Graphics", Cross Talk,
Vol.2, No.3, Department of Electrical Engineering,
M.LT., December 1972, p. 3.

Galley .. S. W., "PDP-IO Virtual Machines", proceedin*s
of Workshop on Virtual Computer Systems, ACM SIGARC -
SIGOPS, Harvard unIversity, March 1973, pp. 30-34.

Licklider, J. C. R., "Consumer (Communication) Networks
for Computers", RCA/MIT Research Conference, RCA
Engineer, Vol. 18, No.5, February/March 1973;-Pp. 69-70.

-65-

AUTOMATIC PROGRAMMING

Academ~c Staff

Prof. M. L. Dertouzos

Prof. G. A. Gorry

Prof. C. Hewitt

Pro". B. Lisl:QV

Prof. S. E. Madnick

Prof. W. A. Martin

Prof. J. Moses

Prof. J. Weizenbaum

DSR Staff

E. R. Banks

R. A. Bogen

J. P. Golden

J. P. Jarvis

R. schroeppel

Graduate Students

S. L. Alter D. L. Isaman

R. V. Baron P. Jessel

V. A. Berzins R. B. I<rumland

P. B. Bishop J. I<ulp

G. Brown T. Landau

J. S. D'AverBa M. Laventhal

A. C. England C. Lynn

S. P. Geiger W. S. Mark

M. J. Ginzberg M. L. Morqenstern

Prla_ lIP ** -67-

R. J. Fateman

V. S. Fless

P. S-H. Wang

J. M. Shah

A. Sunguroff

D. C. Watson

J. L. White

G. Pfister

M. Rashwan

G. Ruth

R. J. Steiger

L. Tsien

S. R. Urnarji

T. Victor

S. A. Ward

J. Wish

Graduate Student. (cont.)

R. T. WOng D. Yun

Undergraduate Students

J. S. Adamcik G. L. Peskin

H. I. Badlan R. T. Petl.' 'litis

G. G. Benedict J. P. Reese

T. L. Davenport E. C. Rosen

R. Law S. E. Saunders

D. J. Littleboy R. M. Siegel

S. M. Macrakis G. L. Steele

W. E. Matson B. M. Trager

B. Niamir R. E. lippal

Support Staff

J. S. Lague N. J. Robinson

Guests

A. Mio1a J-t. Wang H. Wantanabe

-68-

AUTOMATIC PROGRAMMING DIVISION

INTRODUCTION

The objective of the Automatic Programming Division is
to develop fundamentally new software techrlology for the pro­
gramming and use of computers in practical applications such
as business data processing, medical diagnosis, symbolic applied
mathematics, automatic control, and management decision systems.
We are attempting to do this not through the construction
of a single softwar~ system, but through the development of
several prototype systems, each designed to explore solutions
to one or more problems faced in current programming practice.
A number of these systems and their results are described
below.

Since this is the first year the division has existed,
our goal has been to bring as many programs as possible to
the point of a simple demonstration. In the coming year some
of these will be revised, others extended, and some abandoned.
A number ~f new faculty and senior research people will be
joining us next year: they will certainly have ideas of their
own. As these are also tested we expect to gain the confidence
to build larger systems as we have done in algebraic manipula­
tion. In that area our MACSYMA system now has become one
of the largest and most sophisticated applications systems
available and has been used very successfully in the past
year.

The division is currently broken down into four groups:
Automatic programming, Mathlab, Medical Decision Making, and
Engineering Robotics. We have included separate r.eports for
each group. It may also be helpful to summarize the state
of the division as a whele.

The division has enhanced its computational resources.
The MATHLAB PDP-IO has been expanded and the software upgraded
to support multiple users of large programs. A q~)d ~ISP
has become operational on MULTICS, and the Engineer~ng Robotics
Group has developed software for the PDP-ll/45.

A number of applications suitable for research have been
identified in mathematics, medicine, control, and management.

Research is being done on the automatic scheduling and
allocation of computational resources, improving the ability
of compu~er programs to explain what they are doing, acquiring
problem descriptions from users, and the development of formalisms
for describing the knowledge possessed by experts to machines
so that the machines can use it effectively in solving problems.

-69-

AUTOMATIC PROGRAMMING GROUP

A. INTRODUCTION

The focus of the Automatic Programming Group is the applica­tion of computers to domains where much i8 already known about how to solve a given problem, yet the great variety of specific problem contexts which arise has so far made it impossible to write a single computer program which would apply in every situation. The basic idea underlying our attack on this issue is to represent the knowledge about how to solve problems in the given domain at a higher level of abstraction than is currently done. This abstract knowledge is then used to qenerate a program for any specific user cOLtext.

Management data proce.sing, and information and decision systems, provide a good example of the type of problem domain we have in mind. Figure 1 shows a classification of some soft­ware package. currently offered for sale by IBM. These fall roughly into two categories:

a)

b)

Support of higher lev~l decision making through the .elective retrieval of data and the applica­tion of extremely simple models (mathematical in character) •

Automation of daily operational procedures through the Incorporation of knowledge about how to perform these procedures into computer programs.
Although such systems may perform well in the environment for which they were designed, it is difficult to adapt them to a new environment if changes other than changes in parameter values are required. This is particularly true of the opera­tional level programs which contain knowledge of particular business procedures.

A step toward improvin~ this situation has been taken by the IBM System 3 Application Customiaer and .imilar progr ... offered by other firms. The customer is given a long multiple choice questionnaire. A typical question might be "When a customur tran.action is proces.ed, the cCIq)uter can COIIIPare the amount he owes to whatever credit limit you assign him and print a note if the amount due is over the limit. Should this be d~ne?" The answers to the.e question. are u.ed to select pre­coded program aegments and assemble them into the user's program. This approach provides much greater flexibility than the pre­coded program products, an4 it also provides the user vi th a structure for the decisions he must make, sugge.ting the .tandard choices. However, the user does not have any way to specify a procedure which 1s not incorporated into the que.tionnaire and there is no way for the system to automatically alter the data structure used in the solution to be .are efficient or more compatible with other uses of the data.

We are constructing a system, Proto.yst .. I, which will go

-70-

AUTOMATIC PROGRAWUNG

Structured Problema

Planning

Management Control

Operational Control

1) Agribusiness Mgmt. info.
sys.

2) System/3 bill of
material processor

3) OS/360 inventory control

4) System/360 order allo­
cation system

5) 05/360 requirements
planning

6) Advanced life info. system

7) Shared hospital accounting
system

8) Shared laboratory
info. syat8IP

9) IBM basic courts system

10) Conaumer gooda system
forecasting

11) PALlS automobile­
homeowners

Structured Support of
Unstructured Problems

1) Planning systems
generator

2) Public utility financial
planning system

1) Project management
system IV

2) Aerospace info. and
control system, project
scheduling, budgeting,
evaluation, and control

1) DynamiC shop floor
control

2) capacity planning­
finite and infinite
loading

3) Consu~er goods
syste~-allocation

Figure l.

ClassLfication of IBH "Program Products"

-71-

Unstructured

AUTOMATIC PROGRAMMING

considerably further in providing user flexibility. This system
is shown schematically in Figure 2. As with the Customlzer, the
user's interaction will begin with a questionnaire, but in Proto­
system I, it will be interactive. The nature of the questions,
however, will be altered from asking for choices of procedure
to asking for information describing the customer's environment.
The questionnaire will not require that the user give multiple
choice ans~ers: instead, constructive responses will be allowed.
How, then, can we be sure that the sy&tem "understands" the user's
problem? We have constructed a relational modeling language,
MAPL, in whioh we can construct a general model of the environ­
ment of a business procedure such as billing or order alloca­
tion. We require that the user's problem be an instantiation
of this general model. (MAPL is described in section I.) This
area of problem acquisition is one we will be exploring further
in the future.

Once a description of the user's problem has been acquired,
the system guides him in the construction of a solution in the
form of a block diagram. we have not yet implemented this key
part of the system except in very elementary form. However,
the Ph.D. thesis of G. Sussman, who will be joining Automatic
Programming next year, contains many of the techniques which we
will need for a full implementation.

Once a solution has been found, there is a possibility that
it is not what the user wants. The user may have mis-described
his problem or he may have made a bad decision on some aspect
of the solution where he did not follow the system's advice. One
way the user can gain confidence in the solution is to explore
its behavior through simulation. In section II we describe a
program which not only simulates the user's solution but then
attempts to explain the difference between the simulation and
what the user expected by making deductions about the model.

It will also be useful if the user can ask questions about
the system's knowledge and its solution using a subset of
English. A program for translating from English to MAPL is
described in section III. Having the ability to query MAPL
models with English also allows us to experiment with systems
which give more support to management decision makers.

Finally, Protosystem I will translate the user's solution
from block diagram form into PL/I. Section IV traces a sample
problem through this translation.

B. MAPL

MAPL is a language for building relational models of the
world. It is not yet completeJ in particular the facilities for
quantification and for describing how to make deductions are still
evolving. The use of relational models has become popular in
file design, artificial intelligence languages, and psychology.
We hope HAPL will evolve into a useful t.plementation of the beat
ideas and will allow subsequent researchers to build on the work
of others.

In MAPL, the world i. considered to be made up of a collection

-72-

AUTOMATlC PROGRAMMING

.... ---1&.... __ --__ --'1---:::1:-,..., ---0

Business

Figure 2.
Protosystea I

-73-

Blo(;k Diagram to [)SSL
Translator

AUTOMATIC PROGRAMMING

of objects. These objects are divided into subsets, such as
the subset of all objects which are fruit. The subset of all
objects which are fruit is represented by 'FRUIT, a predicate
which is true only for objects in this subeet by .FRUIT, and a
typical object of this subset by $FRUIT. A subset of IFRUIT
might be 'APPLE. we state this in MAPL as A-K-O (A-K-O APPLE
FRUIT). A-K-O is read -a kind of.- FRUIT 'ADd APPLE are referred
to as concepts. Since one concept can be a kind of several
other concepts, the concepts form a lattice under set inclusion.

It is interesting to ask how many concepts a world model
might contain. This can be approached by counting the number
of distinct words in technical questionnaires, books, and case
studies, and by building world models. We guess that interesting
models can be built with less than 10,000 concepts, although
the models W8 have actually built have all contained only a few
hundred.

A MAPL world modeler can assign properties to concepts
(actually to the I, I, $ manifestations of a concept). For
example, to state that any fruit can have color he would write
(A-R-O COLOR-oF COLOR FRUIT). This declares that the rela­
tion COLOR-oF takes tuples, the first member of which is a
COLOR and the second member of which is a FRUIT. Suppose that
during problem acquisiti~ the user attempts to state that his
apples are red. Given the above declaration of COLOR-oF, the
system will accept this if RED is a kind of a color and the
user's APPLE is a kind of a fruit.

It is our goal to find standard methods of handling time,
location, characteristics, and other relationships in MAPL, so
that the individual world ~eler will not have to work this
out. Figure 3 shows a classification of characteristics as
nominal, ordinal, interval measure, or ratio mea.ure. Values
of nominal characteristics cannot be ordered. One does not
say that red is greater than blue. Values of ordinal character­
istics can be compared, but no unit of measure exists. When the
world modeler defines a new characteristic he should say what
class of characteristics it is a kind of. The system will then
automatically know certain things about it.

MAPL haa a number of other features not described here.
For example, any relation or tuple can participate in another
relation or tuple. An example of its u •• in making deductions
is reported by the Medical Deci.ion Making Group.

C. DEBUGGING MODBLS

A key part of programming is the creation of the modal of
the problem to be solved and the model of the proposed solution.
Any model will be an approximation of the real situation, and
even if it is consistent within itself we must rely on the user
to evaluate its sui tabili ty. 'lbe problem of intemal consistency
ia also, in CJ8neral, unsolvable within the system. We can, how­
ever, gain confidence that the model is all right by exercising
it and checking to .. e if it _ts certain expectations Ht by
the .. er.

-74-

,
~
VI ,

All link. are %A-K-O
unl.ss indicated.

measure

Figure 3.

Partial Concept Net for Characteristics.

iocost­
measure

temp- -0 7,m0l1'Kunit
erature-
unit .

'_dollar\

%distance­
me"Mr,

',peso

)0
c

~
>-3
H
o
It!

~

i
I-t
Z
Cl

AUTOMATIC PROGRAMMING

Suppose a user creates a model and asks the machine to do
a simulation with it. The user a180 describes what he expects
the results of the simulation to be. If the actual results
differ fran these, t.hey may represent the manifestation of sane
bug, or incorrect description or decision, in the moapl. We
have a program which ~ttempt. to locate possible bugs. At pre­
sent it knows about comp~tition for resources, and time se­
quencing problems of the type which occur in business games.

Suppose the user presents the program with the following
tiny model:.

"Consider the following model of sales. A sale
is a probabilistic occurence which depends only on
the amount of advertising done. Advertising costs
$3,000 per page and is good for one quarter. I buy
three pages of advertising per quarter if the money
is available. Sales take place during sales calls
on customers. There is one call per salesman per
quarter: a customer never buys more than one unit.
If a unit is sold, the company records $5,000 in
accounts receivable which is not collected for
another two quarters. At any time, any salesman has
a 5' chance of quitting. If a salesman quits, a new
man is hired. After three months of training, this
man beCQmes a salesman and may start making calls.
Both sa~esmen and trainees are paid $1,000 per
quarter. Trainees also have a 5' chance of quitting
at any ·~ime."

The user wo~ld input this model into the program with the pro­
gram's model specification language (MSL). In these terms, the
model looks like:

(*ACTIVITY HIRING

)

(*PREREQUISITES (*PRESENT (1000 CASH»)
(*SCREDULE CON QUIT»
C*PRIORI'l'Y 2)
C*OUTPUT '(A TRAINEE»

(*ACTIVI'l'Y ADVERTISING
(*PRERBQUISITES C*PRESENT (3000 CASH»)
(*SCHEDULE 3)
(*TAKES 1)
(*PRIORI'l'Y 3)
(*OU'l'PUT '(1 PAGE-OF-ADVERTISING»

)
(*ACTIVITY TRAINING

(*PREJU!X)UISlTES
(AND

(*PRESENT (1000 CASH»
(*PRESENT (Saa: TRAINEE»

)
(tTAKES 3
(*OUTPUT '(A SALESMAN»)

)
C*ACTIVITY SALES-CALL

C*PREREQUISI~';
(AND

-76-

)
(*TAKES 1)

)

AUTOMATIC PROGRAMMING

(*PRESENT (1000 CASH»
(*PRESENT (1 UNIT»
(*PRESENT (SOME SALESliAN»

(*AC~!VITY A-R-MATURATION

)

(*PREREQUISITES (*PRESENT (5000 A-R»)
(*TAKES 2)
(*OUTPUT '(5000 CASH»

(*EVENT SALE

)

(*CONDITIONS SALES-PROBABILITY)
(*ACTIVITIES (SALES-CALL)

(*OUTPUT '(5000 A-R»

(*EVENT QUITTING

)

(*CONDITIONS (UNIFORM .05»
(*ACTIVITIES (SALES-CALL)

(*CANCEL)
(*REMOVE '(THAT SALESMAN»

)
(*ACTIVITIES (TRAINING)

(*CANCEL)
(*REMOVE '(TIfAT TRAINEE»

(*FUNCTION SALES-PROBABILITY
(*ARGUMENTS (ALL PAGE-OF-ADVERTISING»
(*RETURN (AD-FUNCTION»

(We will not show the exact nature of AD-FUNCTION, as
it is of no importance to the example. Note that A-R
denotes "accounts rec~ivable" throughout the model.)

In MSL a model is described as a collection of ACTIVITIES.
Each ACTIVITY has certain properties. For example, the first
activity above, HIRING, requires $1,000 cash, is cClr.e when a
salesman quits and produces a trainee. In competilion for r~­
sources it has a priority of 2.

Now suppose the us~r gives the program the following:

(*SIMULATE 4 1
(f 30000 CASH)

(SO UNITS)
(DON SALESMAN)
(MARK SALESMAN)
'STEVE SALESMAN)
(BILL SALESMAN)

(*WANT 6 3ALE»)

which states that a simulation of 4 time periods with thp. initial
condi tj cnr; of $30,000, 50 units, and four salesmen shoulc. result
in six items sold. The resulta of the simulation are shown in

-77-

AUTOMATIC PROGRAMMING

Figure 4. Only 5 Wlits rather than 6 were sold. The program
now attempts to determine why sales were low by setting a goal
of increasing sales one unit in time period 4. This goal will
lead to other subgoals. For each goal and subgoal the program
uses the model and the simulation history to ask two questione.

(1) Why didn't you meet this goal before?
If there is no good reason,
(2) How could we do this?

A line of reasoning which might be followed by the program
is indicatl!d by Figure S. From the model it sees that one way
to increase sales in period 4 is to increase the probability of
a sale on '~ach sales call. This can onl y be done by increasing
advertising. The normal three pages of advertising wasn't done,
however, because we were short of cash in period 4. We could
have more cash in period • if we could generate more accounts
receivable in period 2. To do this, we need more sales in
period 2. We can get more sales either with more salesmen or
more advertising. However, the training period precludes getting
more salesmen by period 2. This leaves us with the possibility
of buying mo~e than 3 pages of advertising in period 2.

we do not claim that this solution should be adopted, but we
feel that it will be useful to present the user with this line of
reasoning. Because it doesn't have all the facts, the program's
conclusions may be entirely inappropriate to the situation, but
the line of reasoning may show the user that he has given the pro­
gram an inadequate model or it may remind him of a facet of the
problem which he ignored. While it may be very difficult to make
a program which is an authority on models, it may be possible to
make one which has interesting comments to make. There are many
important general concepts, such a. feedback, wh~ch the program
does not yet understand. There are many models here at M.I.T.
which have baen found uaeful in business situations, and which
can be used as examples in expanding the program.

D. ENGLISH LANGUAGE INPU'l'

we feel that English lanquage input will be important both
in allowing us to obtain the knowledge of experts and in supplying
expertise to the general public. We examined a number of the
existing English input routines and found that while many good
ideas had baen discovered, no existent program lent itself to
extension as a general purpose routine. We have de'Jigned a new
routine and implemented it in full generality for one test
sentence:

RHow much did we sell to Sears in '72?-

A description of the program's behavior on this sentence i. given
below.

One of the new features of the parser is the use of a c •••
grammar. The basie tenet of case grammar 1s that the sentence
consists of a verb and one or more noun phrases (or other aen­
tenca elements) each as.ociated with the verb in a particular
relationship. This view 1. useful in analyzing the sentence.:

-78-

CASH

$30,000

$17,000

$5,000

$2,000

$0

SCHEDULE

AUTvLt""'I~ PROGRAMMING

A-R

$0

$10,000

$15,000

$10,000

$10,000

UNITS
ON

SALESMEN TRAINEE~ HAND

4 0 50

4 0 48

3 1 47

3 1 46

3 1 45

Figure 4.

INCREASE S~ 1 IN PERIOD 4

INCREASE SALES-PROB IN PERIOD 4

!

SALES
OF

UNITS

2

1

1

1

SCHEDULE MORE ~RTISING IN PERIOD 4

INCREASE C~ IN PERIOD 4

INCREASE A-R ",,!TION IN PERIOD 2

7W£S 2 IN PERIOD 2

SALES
CALLS

4

3

3

3

I«>RE ADVERTISING IN PERIOD 2 ~""SHEN IN PERIOD 2

!
INCREASE HIRING IN PERIOD 2

Figure 5.

-79-

PAGES
OF
ADV

3

3

3

1

AUTOMATIC PROGRAMMING

1) John opened the door with a stick.

2) A stick opened the door.

3) The door opened.

In 1) we take John as the agent, a stick as the instrument, and
the door as the object. Sentences 1), 2) and 3) show how a verb
like open takes the agent, object, or instrument as the surface
subject. Our scheme involves listing, for each verb meaning,
what cases it takes and what predicate a noun group or other
construction has to pass in order to be acceptable for that case.
We must also list for each verb meaning what cases a noun group
could be depending on its position in the sentence or the prepo­
sition which precedes it. The verb meanings are arranged in a
MAPL lattice which reduces the redundancy in the specification.

The parser recognizes the following aggregates of words
and phrases:

MAJOR-CLAUSE

SECONDARY-CLAUSE

NOUN-GROUP

ADJECTIVE-GROUP

ADVERB-GROUP

QUESTION-GROUP

PREPOSITION-GROUP

VERB-GROUP

It builds up a MAPL expression for each ~~rase. The MAPL ex­
pression corresponding to ·How much did we sell to Sears in '121"
is shown in Figure 6. h finite state transition network has been
written for each phrase. ~ach state can have three kinds of arcs
leading out of it: next-unit, try-branches-of (indicated by ----+
in the word order charts below), and no-success. When building
the MAPL expression corresponding to a phrase, the parser tries
each of the next-unit arcs out of the current state of that
phrase, if none of these applies it looks for the try-branches-of
arc (of which there is at most one) and tries the arcs of the
state indicated by it. If none of these leads to success it looks
for a no-success are, which indicates under what conditions the
phrase can be complete without further constituents added. Each
arc gives the syntactic type of the word or phrase which must be
found next and a function which JII'Jst be successfully applied to
the MAPL expression built up so far, and the MAPL expression for
the phrase just found. If the tunctio~ is successful, it returns
the new partial MAPL expression for the part of the phrase found
so far.

For example, a fragment of the ncUD group network currently
implemented looks like:

-80-

AUTOMATIC PROGRAMMING

(NOUN-GROUP DET=NUM-ADJ=NOUN=PRONOUN

(WE-YOU ADD-PRONOUN-TO-NG

(NOUN-GROUP NUM=ADJ=NOUN=ALL

(NO-SUCCESS DO-NOTHINGI SUCCEED»)

(TRY-BRANCHES-OF DO-NOTHINGl ORDINAL-SUBTREE»

G0166

AGENT-OF GOl66

TYPE-OF PRONOUN-NG

SYNTHETIC-CASE-OF SUBJECTIVE

PERSON-OF FIRST

NUMBER-OF PLURAL

OBJECT-OF

TYPE-OF QUESTION-NG

COUNTABILITY-OF MASS

RELATION-QUESTIONED-OF COUNT-OF

NUMBER-OF SINGULAR

TIME-OF G0175

TIME-REFERENCE-OF IN 00166 G0174

A-I<-O YEAR-1972

T -OF OBJECT-NG

NUMBER-OF SINGULAR

RECIPIENT-OF G0172

A-K-O SEARS

NUMBER OF SINGULAR

RELATION-QUESTIONED-OF OBJECT-OF

TENSE-OF (PAST)

A-I<-O SELL-GOODS

PERSON-NUMBER-OF PLURAL

TYPE-OF WH-QUESTION-CLAUSE

Output of the parser for the sentence
"How much did 'lie ell to Sears in '72?"

-81-

AUTOMATIC PROGRAMMING

The first line says that we have a NOUN-~ROUP going and we are
currently looking for something which is a kind of DET-NUM-ADJ­
NOUN-PRONOUN. The second line says that if we in fact find
something which is a kind of WE-YOU then we attempt to apply
the function ADD-PRONOUN-TO-NG to the MAPL form of the noun
group, and the MAPL form of WE-yOU. If this function returns
NIL the parse can't proceed. The only alternative is then given
by the fifth line, which says that if the function DO-NOTHINGl
can be applied to the NOUN-GROUP MAPL form with a non-NIL re­
sult we can try the branches of the node named ORDINAL-SUBTREE.
If ADD-PRONOUN-TO-NG is successful, the third line tells us
that we then have a noun-group going and are looking for a NUM­
ADJ-NOUN-ALL. If we don't find one, the fourth line says that
if DO-NOTHINGl applied to the NOUN-GROUP MAL form is non-NIL,
then that result is the completed noun group, which can then be
added to a superior group or clause.

During the parse, the parser maintains a stack of pairs: a
current state in a phrase and a partial MAPL expression. The
stack is started off with one pair, the first state of MAJOR­
CLAUSE and a null MAPL expression. The parser then looks at the
next word of the input string and takes a number of actions which
are dependent on our view of the structure of English. First, it
checks to see if the word starts a noun idiom or proper noun
expression and builds it if it does. Failing this, it tries to
add the word to the current phrase. Failing this, it checks to
see if the word would begin one of the other phrases. If it will,
it starts that phrase. It then checks to see if this new phrase
could possibly be fitted onto the current one when the new one is
finished. It does this by comparing what we have going in the
new phrase with what we are looking for in the current one. If
the new phrase can yield a constituent we are looking for, it
adds the new phrase to the stack. When a phrase is finished the
parser removes it from the stack and tries to add it to the one
immediately above. If t~i8 fails, it checks to see if the one
above can be considered complete without additional constituents
being added. For example, consider:

I rode down the street in the ear.

At some poin~ we will in effect have

I rode +

down +

the street +

in ~he car.

The parser will try to form

I rode +

-82-

AUTOMATIC PROGRAMMING

down +

the street in the car

but the MAPL world will block this. The parser will then form

I rode +

down the street

in the car.

and then it will form

I rode down the street +

in the car.

and it will then be successful in attaching in the car to the
main clause. In starting a new group the parser must also con­
sider the possibility that it begins a secondary clause. For
example,

We celebrated the day the rain came.

The parser will qet

We celebrated +

the day +

and it will then see that the next word starts another noun
group. A noun group cannot post-modify a noun group, but it
can start a secondary clause. The parser forms

We celebrated +

the day +

the +

and continues as normal. All parsings are found by taking all
branches at early decision points and the corresponding MAP ex­
pressions generated for each. Complete constituents are saved
so that they are not generated twice by different parses.
Negation, surface-obj~·;t~ve-case, and person-number are not used
to stop a phrase unti~ it is time to add it to the one above.
Such features don't seem to block many false parses. That is,
these features are checked by the functions which combine MAPL
forms rather than being used to d~scribe what we are looking for
and what we have going. As the parser finds the noun groups of
the clause from left to right it is not always able to assign
them to the proper case immediate~y, therefore it holds them
until enough is known. For example, consider the sentence,

How much did we sell to sears in '121

-83-

AUTOMATIC PROGRAMMING

The parser attempts to move through the sentence putting consti­
tuents aside (but remembering their position) until it finds
the surface object. First it finds "how much" and remembers
this as the first noun group. Then it finds "did" and remembers
this as a possible auxilliary. Next it finds "we" and remembers
this as the second noun group. Then it finds "sell". It now
knows that "we" is the surface subject and "did sell" is the
verb. Next it finds "to Sears". Since this is a preposition
group it knows there are no surface objects. It now considers
each meaning of "sell". For each meaning it looks up the pos­
sible cases for the surface subject and discovers that "we"
could be either the agent or the object. Currently it does not
attempt to discover that "we" is Globe Union Battery Company~
but that would not ~hange what follows. It discovers that "we"
passes both the object and agent predicates for sell, so it
remembers that these two possibilities remain, and proceeds with
the parse. It finds "to Sears". It finds that "to" flags the
recipient for "sell" and that the recipient does not take a
prepositional phrase in fact, but only the object. "Sears" passes
the predicate for recipient and is assigned. The parser finls
"in '72". "In" flags time, which does take the whole preposi­
tional phrase. "In '72" passes the predicate for time and is
stored as

(TlME-REFERENT-OF IN Major clause YEAR-1972).

Now the sentence is finished and "How much" has not been needed
by a dangling preposition. Since it oceurs in first pos1tion,
"How much" must thus be the object, this makes "we" the agent.

E. TRANSLATION INTO PL/I

As shown in Figure 2, in Protosystem I, the model of the
solution to a user's problem is expressed in Detailed ~stem
Simulation Language (DSSL). To get an idea of the nature of
this languaqe, consider the A'T Supermarket Micro case shown
schematically in Figure 7. Each day stores order from a central
warehouse. The warehouse fills the items from inventory and then
orders items which are in short supply from a supplier. The
supplier fills the orders the next day and the warehouse updates
its inventory. Protosystem has generated PL/I for this example.
An inventory fi Ie of ",000 i tema is kept at the warehouse. The
quantity of each item on hand at the warehouse, taking into ac­
count receipts from suppliers, is given by

BEGINNING-INVENTORY (~Y, ITEM) •

IF DEFINED (FINAL~INVENTORY (DAY -- I, ITEM»

AND DEFINED (QUANTITY-RECEIVED (DAY, ITEM»

THEN FINAL-INVENTORY (DAY 1, ITEM) +

QUANTITY-RECEIVED (DAY, ITEM)

OR IF DEFINED (FINAL-INVENTORY (DAY 1, ITEM»

-84-

(¥esterday's qIl;,ntity
ordered by warehouse)

Quantity
Received

(Yesterday's
final

Inventory)

Beqinninq
Inventory

Quantity
shipped by

Store

~

Store Ordering
Generatior.

Quantity
Ordered by Store

Defined for some Store

Generation

Q'Jalltity
Ordered by Store

Order Al '.o.:.:ation

AUTOMATIC PROGRAMMING

Generate Time

Quantity Ordered by
Store-Timewindow

Quantity Ordered by Warehouse

i
Figure: 7.

A&T Micro CasE"

-85-

AUTOMATIC PROGRAMMING

THEN FINAL-INVENTORY (DAY 1, ITEM)

ELSE UNDEFINED

BEGINNING-INVENTORY is to be calculated for each ite. each
day. As shown in Figure 6, the name of this calculation i8
Inventory Update.

BEGINNING-INVENTORY (DAY, ITEM) c-.nd QUANTITY-ORDERED-BY­
STORE (DAY, STORE, ITEM) are inputs to the Order Allocation
Calculation. This calculation is an aggregate operation on
QUANTITY-ORDERED-BY-STORE because on a given day it must allo­
cate a given item across all stores ordering it. In DSSL all
such aggregate operations are represented by special functions
built into the language. We h~ve currently defined SUBSET­
ALLOCATE, SUBSET-COUNT, SUBSET-MAX, SUBSET-MIN, SUBSET-NUMBER,
and SUBSET-PLUS. It is our assumption that most business data
calculations which involve aggregation can be expressed in terms
of a rather 8mall set of such functions.

By way of illustration we will define SUBSET-PLUS before
returnin~ to the allocation of warehouse items. SUBSET-PLUS
is defined by the expression

where Input, Output, and k i are given to SUBSET-PLUS as para­
meters.

Our current version of SUBSET-ALLOCATE says that store
orders are filled in any sequence. Each store receives the
amount it ordered unless not enough of the item is remaining.
then it receives none. SUBSET-ALLOCATE takes a. inputs the
orders and the beginning inventory and produces as outputs the
quanti ty shipped and the final inventory. For A'T Micro we
have

Order Allocation

SUBSET-ALLOCATEe

QUANTITY-SRIPPED-TO-S'1'ORE (DAY, STORE, ITEM)

FINAL-INVENTORY (DAY, ITEM)

QtJANTITY-oRl?ERED-BY-S'1'ORE (DAY, STORE. ITEM)

BEGINNING-INVENTORY (DAY, ITEM)

ITEM)

After the value of FINAL-INVENTORY has been computed for e~ch
item, Reorder Calculation determines if the warehouse should
order more of the item frOll the 8upplier. The amount to be
ordered i8 defined by

AUTOMATIC PROGRAMMING

QUANTITY-ORDERED-BY-WAREHOUSE (DAY, ITEM) -

IF DEFINED (FINAL-INVENTORY (DAY, ITEM»

AND FINAL-INVENTORY (DAY,ITEM) < 100

THEN 1000

ELSE UNDEFINED

Inventory Update, Order Allocation, and Reorder Calculation are
the three calculations which are to be implemented in PL/I on
the warehouse's computer. The other calculations in Figure 6
are needed only to define and describe the input variables
QUANTITY-RECEIVED and QUANTITY-ORDERED-BY-STORE.

As shown in Figure 2, the DSSL is translated into DSL.
Each of the variables is converted into a DSL data set. In
this representation, each of the other parameters of the variable
except the period becomes a ~e~ and the variable becomes a data
value. For example,

QUANTITY-ORDERED-BY-STORE (DAY, STORE, ITEM)

becomes a data set with fixed length records of the form

data value

key

key

QUANTITY-ORDERED-BY-STORE

STORE

ITEM

In this example, it will not be necessary to consider
the possibility that the values of keys are the output of a
computation. We will define ITEM to take on all values in the
set SET-OF-ITEMS and STORE to take on all values in the set SET­
OF-STORES. The DSSL description will tell us how many elements
each of these sets contains and give a predic;!te which is true
only for members of the set.

Suppose there are s elements in the set SE'r-OF-STORES and
i elements in the set SET-OF-ITEMS, then there are s t.imes i
possible records in the data set QUANTITY-ORDERED-BY-STO~. We
will make the convention that a record is physically r°::-esent in
a data set only if its data value is defined. It is j:, .• portart
to know the r.wnber of records to be expected in a dat<1 set on a
given ~ay in order to optimize the PL/I programs for the high
volume operations. To this end, we will define the key predicate
of a data set to be a predicate on the time and the keys of a
data set, which is true if the data set physically contains a
record with those keys at that time. Clearly, the number of re­
cords in a data set can vary with time. (Stores don't have to
place the same number of orders every day.) In Protosystem I,
the design is based only on the time average and maximum number
of records. The key predicate for QUANTITY-ORDERED-BY-STORE mu~t
be computable from the DSSL description. The appropriate infor­
mation is contained in Store Ordering Generation and Store Order
Generation.

-87-

AUTOMATIC PROGRAMMING

Key predicates of output data sets of a computation are
computed from the inputs and the definitio~ of the computation.
For example, consider Reorder Calculation, as shown in Figure 8.

QUANTITy-oRDERED

FINAL INVEl'ITORY REORDER CALCULATION BY WAREHOUSE

O~~~~O
P 3 (ITEM)

Fiqure 8

Suppose P (ITEM) is found to be just

ITEM £ SET-OF-lTEMS

From the definition of Reorder Calculation we have

P (ITEM) - P (ITEM) AND FINAL-INVENTORY

(ITEM) < 100.

Substituting in we get

P (ITEM) • ITEM £ SET-OF-ITEMS and

FINAL-INVENTORY (ITEM) < 100.

It is the job of the Question Answerer and Simulator to deter­
mine the time average number of records for which this predicate
is true. The first term is independent of timeJ there are 4,000
items. Since all items have been defined to have the same behavior,
the average can be found by finding the time average for which
FINAL-INVENTORY (ITEM) < 100 is true for one item and multiplying
b~' 4,000.

The above discussion should give the reader an idea of the
level of description and the problems being attacked by the DSSL
to DSL Translator, Question Answerer, and Simulator in Proto­
syst.m I. Let us turn to the interactive optimizer and heuristic
optimizer.

Both optimizers play the same role, the interactive optimizer
requires a human to suggest solutions, the heuristic optimizer is
autnmatic. Only the interactive optimizer is debugged at this
point. The problem faced by the optimizers in the A'T Micro case
is shown schematically in Figure 9.

-88-

AUTOMATIC PROGRAMMING

QR
Inventory

Update BI
Order

Allocation

Figure 9

AUTOMATIC PROGRAMMING

QSTS

Reorder
Calculation ~~W

Circles represent data sets and rectangles represent computa­
tions.

Optimization involves merging computations and data sets,
insertion of sorts, and assignment of file structure and para­
meters, and access methods. For example, in Figure 9 it would
be possible to combine Inventory Update or Reorder Calculation
into Order Allocation. If Inventory Update is combined with
Order Allocation, data set BI and the associated file reads and
writes can be eliminated. If Reorder Calculation is combined
with Order Allocation a read of data set FI is eliminated, but
FI cannot be eliminated, as it is an input to Inventory Update.
The Order Allocation calculation requires that a running tabula­
tion of the amount of each item remaining be kept while orders
are being allocated to that item. This can either be done with
a table in core containing an entry for each item, or data set
OOBS can be sorted on item. If data set QOBS is sorted on item
and calculation Order Allocation is done in item sequence, then
data set BI can either be sorted on item and accessed sequentially
or accessed randomly.

It should be clear that although we allow only three choices
of file organization and ~ few access methods, that since the
choices at any point partially constrain the adjacent choices the
number of possible deSigns is combinatorially very large and not
easy to enumerate.

~he worth of a given design is found by estimating what it
would cost to run it at the M.I.T. Computation Center IBM 370
installation. The center computes the cost of a run from a
standard formula involving such variables as the amount of CPU
time used, the amount of core used, and the number of secondary
storage accesses made. The amount of core taken by a given run
depends on such facts as how the operating system treats utility
programs. Therefore, a large number of runs were made at that
installation to get data on core requirements, sort times, and
the like from which interpolations can be made for a proposed
PL/I program or sort.

Once the above constraints have been chosen, PL/I and IBM
Job Control,Language can be generated by a process similar to
code generation in a compiler. Thus, the output of the whole
process is a set of PL/I programs for the given application.

-89-

MATHLAB GROUP

A. INTRODUCTION

This year the Mathlab Group has !1\o.Je 81gni ficant progress
on several fronts. Most notable hi"S L en ':.he acceptance of the
MACSYMA system (bugs and all) U} u U~._r community at M.LT. and
around the country. The system has 3lready started to become a
paper generating machine (published papers, that is). Signifi­
cant progress has been made in algorithm analysis and design.
Our new Greatest Cammon Divisor algorithm is exponentially faster
than existing algorithms in many cases. Additional upgrading of
our hardware and our LISP system has also taken place which has
led to a significant improvement in the response time of the
MACSYMA system. New capabilities (e.g. Laplace Transforms) have
been added to the system and have in turn been critical in cal­
culations which are now in various stages of publication. Our
interaction with the Plasma Group at RLE has been yielding im­
portant results and we expect use of the system by plasma physi­
cists in this country and possibly in Europe (via ARPA's connection
to Norway). The MACSYMA system has also been made operational on
the MULTICS system in the past year.

B. HARDWARE IMPROVEMENTS TO THE MATHLAB PDP-lO

The "Mathlab" PDP-IO became operational in February, 1971.
Very early it became clear that 256K of primary memory was in­
sufficient to run more than one MACSYMA user at a time with a
reasonable response time. Another 256K of memory was ordered from
Ampex and 128K of it has been installed by April, 1973. The
effect on swapping behavior of the system was dramatic, as expected.
When the full 512K is installed, we expect five MACSYMAs to run
simultarleously in memory. When additional improvements are made
to our LISP system, this figure should double.

c. IMPROVEMENTS TO MAC-LISP

One of the most interesting improvements to our LISP system
has been one which allows both users and designers to share the
same code and obtain different debugging and run-time behavior.
System designers want to be able to trace any subroutine at any
given time. This is possible if all subroutine calls are run
interpretively. This increases the run-time by a factor of about
four on the average. Users do not wish to trace MACSYMA functions
and thus should not pay this factor of four. We have made all
subroutine calls go indirectly through special pages. One set of
pages contains calls directly to the subroutine, the other set
calls the subrouti~e linkage routine instead. By switching these
pages in the user's page map we are able to get the performance
desired. This work was done by our LISP development group made
up of Jon White, Guy Steele, and Stavr~s Macrakis.

A normal MACSY~A version currently requires approximately
lSSK of memory, of whic~ about aSK is shared code. A version
containing the entire system would require about 22SK, of Which
1351(would be shared. Approximately half of the unshared portion

-91-

MATHLAB GROUP

of each user's space is comprised of list structure which is
used as data by the subroutines. If we could share this data,
then the memory overhead for additional MACSYMA users would de­
crease by a factor of two. We now plan to assign to each page
in the user's map an entry in a table indicating the type of
infonnation in the pages (e.g. pure free storage, binary program,
stack, impure free storage). This will give us some properties
of segments (e.g. dynamic growth of number of pages containing
a certain type of information) and still preserve the ability for
one word to reference another directly. When this scheme is
implemented the system will not only be able to share more
info~ation, but the arrangement of spaces for different infor­
mation will change dynamically. Garbage collection and type
testing times will also decrease sygnificantly.

D. ARPA NETWORK UTILIZATION

The Mathlab Machine went on the network in May, 1972. Since
then we have built a moderate user community on the network. Our
experience has been that once a user is able to solve II significant
problem with the system then he is usually "hooked" and can be
expected to use the system continually. A recent study indicates
that in a period of several weeks 9' of all console hours charged
to users came from network users, and that signi ficant time was
chargeable to users at 30 nodes along the network. Most of this
network time is probably spent in using MACSYMA. Locally the
machine is used quite heavily by the Medical Diagnosis and Auto­
matic Programming groups as well as by the Mathlab Group and
MACSYMA users in the M. I. T. communi ty.

We are aware of significant projects at several sites. At
NASA-Langley there is a project which uses HACSYMA to generate a
finite element scheme for solving partial differential equations.
FORTRAN subroutines are generated and fed to a CDC 6600 for the
numerical computation [1). Other computations in quantum electro­
dyn&lllics are run there as well. At JPI· MACSYMA is used by the
numerical analysis group as an extension of their service to the
JPL community. A Ph.D thesis in celestial astronomy is being
completed, in part, through computationa using MACSYMA. At Cal
Tech calculations required in theoretical analyses of spline
functions are being done and larger projects are under considera­
tion. At the Stevens Institute of Technology calculation. in
plasma physics are being made. There is additional significant
utilization of the system from the UniYersity of California a~
Santa Barbara (13), NOAA, and from within ARPA itaelf, but we
are not familiar with the details of all of theae applications.
There is some diSCUSSion about utilization of the system from
several plasma physics centera in Europe throuqh the conn.c~ion
in Norway. 'l'hese discuasi~s are at a prelbdnary staqe, however.

E. NEW AND IMPROVED SUBSYSTEMS IN MACSYMA

In the pas~ year several new and some highly modified sub­
.y.~e .. were introduced in~o the system and often led to .ucce.s
in calculations Which were not pea.ible earlier.

Richard Bogen completed Laplace Transform and Inverse La­
place Transform rou~ine.. we soon had an application 1n g ..

-92-

t-tATHLAB GROUP

chromotography from a professor at the Harvard School of Public
Health which depended on this capability. The result apparently
indicates the possibility of d~signinq very general devices in
this area.

Richard Zippel has completed a subsystem for manipulation
formal power series with both negative and rational exponents.
This system which is more general than similar work in other
groups [8J adds an entirely new data representation to MACSYMA.
It vindicates our general design decision to allow for a variety
of data representations rather than depending on a single repre­
sentation as is the case in most other systems. The subsystem
has been used in many calculations.

Michael Genesereth has completed a translator from MACSYMA's
top level language to LISP. There have been experiments by
Richard Pateman which tied this translator to our recent LISP
compiler and which show that for certain purely numerical cal­
culations compiled MACSYMAroutines run 2C\ faster than the
corresponding FORTRAN programs rompiled with the standard DEC
compiler [7]. The '!"'eason for t~lis discrepancy is due to the
inefficiency in FORTRAN subroutine calls. This is ironic since
LISP subroutine calls are more general because they allow for
recursion and Standard FORTRAN does not.

David Yun has completed a version of our new EZ GCD algorithm
which is Also discussed below. This algorithm has been compared
with the Modular GCD algorithm developed by Brown, Collins and
Knuth (12). As we had expected, the Modular algorithm required
time which was an exponential function of its input size and the
EZ algorithm only needed time which was a linear function of the
input size on a class of problems. While the EZ algorithm is not
exponentially better than previous algorithms for All problems,
its advantage is sufficiently great to make those algorithms ob­
solete. In particular, certain calculations, especially polynomial
factorizations, we had previously given up on have been success­
fully completed with the Ez GCD algorithm.

David Yun also has completed a subsystem for solving a set
of polynomial equations [14J. This program uses a resultan~
algorithm to successively eliminate variables. It tries to keep
the degrees of the resultants low by factoring them. A final
univariate polynomi~l is solved, using infinite precisions arith­
metic if necessary, to obtain its real roots to any desired degree
of accuracy. The system can yield a surface of solutions when the
original set of equations js undetermined. The system has been
used to ci~eck ~alculations performed by Professor Rabin and Dr.
Winograd of I~M.

Richard Bonneau of Project MAC's Theory Group has worked with
Richard Fateman on Fast Fourier Transform algorithms for polynomial
multiplications [G). In certain cases when the polynomials are
fairly dense, FFT techniques are more efficient than any other
means for performing polynomial exponentiation as well as other
processes. To our knowledge this is the first practical use of
FFT techniques in algebraic manipulation.

-93-

MATHLAB GROUP

F. WORK IN PROGRESS

Dr. Paul Wang has been extending his factorization system
to factor polynomials over algebraic number fields. The mathe­
matics (in particular, algebraic number theory tec!miques) has
been developed by Elwyn Berlekamp, Hans Zassenhaus, and in our
group by Linda Rothschild and by Peter Weinberger from the Uni­
versity of Michigan, who acted a8 a consultant. This system
requires an extension of our rational function package to alge­
braic numbers. Barry Trager has been implementing that extension.

Trager has also been implementing an extension to our ra­
tional function package to allow it to handle polynomials in
factored form. When this is completed we shall be able to avoid
excessive blow-up of expressions in many situations.

Dr. Vera Pless has been conSidering implementing a system
for calculations in group theory. This would require translating
code in systems under development in Australia and Germany. She
plans to extend such systems to handle differen~ types of calcula­
tions in group theory, combinatorics, Lie groups, etc.

Joel Moses has been extending his implementations of the
Risch integration algorithm [11). The exponential case is almost
completed now and work is proceeding on tools for handling the
algebraic case. Jayant Shah of Northeastern has acted as a con­
sultant on the algorithms from algebraic geometry required in
this case. with Dr. Ed Ng of JPL, Moses has been analyzing the
possibility of extending the Risch algorithm to a class of special
functiona, including the error function, the Incomplete Gamma
function and the elliptic function.

Michael GeneBereth has been implementing an extendable parser
similar to that orginally devised by Vaughn Pratt. Preliminary
experiments indicate that it is four times faste~ than our
existing Floyd precedence parser. Many suggestions for extending
our input syntax have been made and 4re being implemented.

Richard Bogen has written several vera ions of a MACSYMA
Manual. The April, 1973 version is over 100 pages long, and is
fairly complete (10). Comments from users are likely to yield
better versions of the manual and its accompanying Primer.

G. THE HENSEL LEMMA IN POLYNC»IIAL MANIPULATION

OUr major theoretical work has been in the design of the
EZ GCD algorithm. The Hensel lemma used in this algorithm for
extending the result from the univariate to multivariate case
shows promi .. of applying 0 in many other problema. Davie! Yun
has already used it to obtain efficient algorithms for ~uare­
free-factorizations and content calculations. He has also shown
that a Hensel-like division a!~orithm is more efficient than the
usual division algorithm on laX"9"" polynOlllials. There is promiae
that this type of interpolation w~ll yield a very efficient re­
sultant algorithm. we believe tha\"o the use of the Hensel 1e .. a
is a breakthrough in this field whi':h should lead to a cl .. s of
algorithms which are the be.t pos.i~le ooes or very close to the
best for practically .iled proble_.

-94-

Ml.THLAB GROUP

REFERENCES

1. Anderson, C.M., "Use of Symbolic Manipulations in the
~velopment of Two-Dimensional Finite Elements", Book of
AD3tracts - SIAM 1973 National ~1eeting, Hampton, Virginia
(June 1973).

2. Bers, A., Kulp, J .. and Watson, D. C., "Analytic Description
of Nonlinear ~.lve Interactions on a Computer", Bull. Amer.
Phys. Soc., Series II, 17, No. 11, 991 (1972).

3. Bers, A., Kulp, J., and Watson, D. C., M.I.T.-R.L.E. Quarterly
Progress Report No. 108, p. 167 (1973).

4. Bers, A., Kulp, J., and Watson, D. C., "Symbolic Computer
Calculations of Plasma Wave Interactions", Book of Abstracts
- International Congress on Waves and Instabilities, Insti­
tute of Theoretical Physics, Innsbruck, Austria, p. 13,
(April 1973).

5. Bers, A., Karney, C. F. F., and Kulp, J., "Parametric Down
Conversion from Lower-Hybrid Frequency Waves", Book of
Abstracts - International Congress on Waves and Instability,
Institute of Theoretical Physics, Innsbruck, Austria, p. 144
(April 1973).

6. Bonneau, Richard J., "A Class of Finite computation Struc­
tures Supporting The Fast Fouri.er Transform", Book of
Abstracts - SIAM 1973 Nation?! Meeting, Hampton, Virginia
(June 1973).

7. Fateman, R. J., "Reply to an Editorial", ::;IGSAM Bulletin
25, March 1973, pp. 9-11.

8. Johnson, S. C., and Brown, W. S., "Truncated Power Series
in ALTRAN", Book of Abstracts - SIAM 1973 National Meeting,
Hampton, Virginia (June 1973).

~. Ku1p, J. L., Bers, A., and Moses, J., "New Capabi1iti~s for
Symbolic Computation in Plasma Physics", Book of Abstracts
- Sixth Conference on Numerical Simulation of Plasmas,
Lawrence Berkeley Laboratory, Berkeley, July 1973.

10. MACSYMA User's Manual, Version Four, April 1973, Project
W.C, M. I • T •

11. Moses, J., "The Exponential Case of the Risch Integration
Algorithm", (Invited Lecture), Book of Abstract9 - SIAM
1973 National Meeting, Hampton, Virginia (June 1973).

12. Moses, J., and Yun, D. Y. Y., "The EZ GCO Algorithm", (to
appear) Proceedings 1973 National ACM Conference, Atlanta,
Georgia, August 1973.

13. Pickens, John R., ARPA Network Information Center, Doc.
No. 16818, RFC No. 519, pp. 2-3.

-95-

MATH LAB GROUP

REFERENCES (CON'T)

14. Yun, David Y. Y., "On Algorithms for Solving Systems of
polynomial Equations", Book of Abstracts - SIAM 1973 Na­
tional Meeting, Hampton, Virginia (J'Jne 1973).

-96-

PLANNER

T· • IlJ'1:RODUC~IOH

Knowledge Based prosramming is programming in an
cnvirorunent whiC'fi"""lias su stanb.al knowledge of the semantic
domain for which the programs are being written and of the
purposes that the programs are supposed to satisfy. Actors
are a semantic concept in which no agent is ever allowed to
treat another as an object, instead a polite request must be
extended to accomplish what the agent desires. Using actors
the PLANNER Project is constructing a prOtramming A1prentice
to make it easier for expert programmers 0 do know edge Lased
programming.

In the last year we have conceived and made a preliminary
implementation of a modular ACTOR architecture and
definitional method that is conceptually based on a single
kind of object: actors (or, if you Will, virtual processors,
activations, or streams). The architec~ure makes no
presuppositions about the representation of primitive data
structures and control structures. Such structures can be
programmed, micro-coded, or hard wired in a uniform modular
fashion. In fact it is impossible to determine whether a
given actor is -really- represented as a list, a vector, a
hash table, a function, or a process. The architecture will
efficiently run the coming generation of PJ~nHER-like
languages including those requiring a high degree of
p~rallelism. The efficiency is gained without loss of
programming generality because it only makes certain actors
more efficient, it does not change their behavioral
characteristics. The arc''litecture is general with respect to
control structure a.nd does not have or need goto, interrupt,
or semaphore primitives. The formalism achieves the goals
that the disallowed constructs are intended to achieve by
other more structured methods.

A satisfactory theory for the representation of knowledge
should have one unified totally integrated formalism and
semantics. For example we should not have one formalism and
semantics for expressing declaratives-and a separate formalism
and semantics for expressing procedures. For some years now
we have been working to achieve this goal. The record of our
progress is published in the Proceedings of the International
Joint Conferences on Artificial Intelligence beginning with
the first conference in 1969. In the course of this research
we have developed the Thesis of Procedural Embedding of
Knowledge which is that wKriowledge of ! domaIn ~ ~n~rinsic­
ally bOund ~ with the procedures for 1ts use.- An ~mportant
corollary is tnar-t~fundamentai techni<queiOf artificial
intelligence is Automatic Programming and Procedural
Knowledge Base Construction.

·Programs should not only work,
but they should appear to work as well.-

PDP-lX Dogma

The P~tNER project is continuing research in natural and
.tfactive means for embedding knowledge in procedures. In the
course of this work we have succeeded in unifying the

-97-

PLANNER

formalism around one fundamental concept: the ACTOR.
Intuitively, an ACTOR is a potential performer Wl11Cli can play
a role on cue. Ue use the ACTOR metaphor to emphasize the
inseparability of control and data flow in our model. The
ACTOR concept suosumes bOtntheconcept of data and the
concept of instructlon.-or.ne behavior of data structures,
functions, semaphores, monitors, ports, descriptions, Quillian
nets, logical formulae, numbers, identifiers, grammars,
demons, proce.ses, conte~ts, and data bases can all ~e .hown
to ue special cases of the behavior of actors. All of the
above are objects with certain useful modes of behavior. Our
formalism shows how all of these modes of behavior can be
definecl in terms of one kind of behaviorz ACTOR TAANSMISSIOH.
An actor is always invoked uniformly in exacrry-tfie .ame way
regardless of whether it behaves as a recursive function, data
structure, or process.

B. INTRINSIC CorlPUTATION

We are approaching the problem of the representation of
knowledge from a behavioral [procedural) as opposed to an
axiomatic approach. OUr view is that objects are defined by
their actions rather than by axiomatizing the properties of
the operations that can be performed on them.

-Ask not what you can do to IIOme actor,
but what the actor can [will?] do for you.-

Alan Kay has called this the INTRINSIC a. opposed to the
EXTRINSIC approach to defining oEject.. Our ~~el follows the
following two fundamental principles of organizing behaviors

•
Control flow and data flow are inseparable.

Computation should be done intrinsically instead of
extrin.ically i.e. -Every actor haa the right to act
for it.elf. w

Although the fundamental principle. are very general they ~ave
definite concrete con.equencea. Por example they rule out the
goto con.truct on the ground. that the goto violates the
inseparability of control and data flow .ince the goto doe.
not allow a •••• age to be paa.ed to the place where control i.
going. Alao the qoto d.fines a ... antic object [the code
following the tag] which i. not properly .yntactically
delimited thus pos.ibly leading to program. which are not
properly syntactically nested. S~ilarly the cla.aical
interrupt mechanism of present day machines violates the
principle of intrinsic computation since it wrenches control
away from whatever in.truction ia runninq when the interrupt
.trik •••

-It is vain to multiply Entities beyond nead.­
William of Occam

-tB-

PLANNER

'fhe unification and simplification of the fOrMalisms for
the procedural cl:lut:.duing of knowledge has " gr<:!at many
benefits for us:

FOl:UDATIONS: The concept puts procedural tiemantics [the
theory of how things operate] on a firmer basis. It \.,ill now
be possible to do cleaner theoretical studip~ of the relation
between procedural semantics anu set-theoretic senantic3 such
as model theorieH of the quantificational calculus and the
lambda calculus.

LOGICAL CALCULI: A procedural semantics is J.eveloped for tne
quantificational calculi. The logical constants F{'IH-ALL,
THERE-EXISTS, AND, OR, NOT, and IaPLIES are defined as actors.

PLAUS are actors invoked by \'lORLC DIRECTED ItNOCATION
[invocation on tile basis of aTra'gment of a micro-\-lOrld] to
try to achieve some goal. PROCEDUHAL DATA BASl::S [WORLDS] are
actors which organize a set of actors for efficient retrieval.
There are three primitive operations for data bases: PUT,
GET, and ERASE which are done ~n the basis of world dire~ted
invocation which the worlols do at the behest of the plans that
they serve.

KNOWLEDGE BASED PROGRAllKING is programming in an environment
which has a substantial knowledge base in the application area
for which the programs 3re intended. The actor formalism aids
kno, .. ledge based programming in the following ways:

PROCEDURAL EMBEDDING of KtlOULEDGE

TRACING BEHAVIORAL DEPENDENCIES

SUBSTANTIATING that ACTORS SATISFY their INTENTIONS

INTElnIONS: Furthermore the confirmation of properties of
procedures is made easier and more uniform. ~very actor has
an INTENTION which checks that the prerequisites and the
context of the actor being sent the message are satisfied.
The intention is the CONTRACT that the actor has with the
outside world. How an actor fulfills its contract is its own
business. By a SIMPLE BUG we mean an actor which does not
eatisfy its inten€~on. ve-wculd like to eliminate simple
d~buggin1 of actors by the META-hVALUATION of actors to show
that they satisfy their intentions. The rules of deduction to
establish that actors satisfy their intentions essentially
take trie form of a high level interpreter for abstractly
evaluating the proqram in the context of its intentions. This
process [called META-EVALUATION] can be justified by a form of
induction. ~eta-evaluation captures a large part of the
mechanism that a programmer goes thru when he reads a piece of
code to determine that it will satisfy its intended purpose.
In general in order to substantiate a property of the behavior
of an actor system some form of induction will be needed. At
present, actor induction for an actor configuration with
audience E can be tentatively described in the following
manner:

-99-

PLANNER

1. The actors in the audience E satisfy the intentions
of the actors to which they send messages

and

2. For each actor A [including those createu in the
cOllrse of a computation] the intention of A is satisfied
-> the intentions for all actors sent messages by A are
satisfieu

Therefore

The intentions of all actions caused by E are satisfied
(i.e. the system behaves correctly)

Computational induction [Manna), structural induction
[BurstaIl], and Peanc induction are all special cases of
ACTOR induction. Actor based intentions have the following
advantages over previous formalisms that have been propos.d:

The intention is decoupled from the actors it describes.

We can partially substantiate facts about the behavior of
actors without giving a complete formal proof. An actor
who is asked can if it chooses vouch for some
circumstance being the case. At some later time if we
require further justification, then we can re-examine the
situation.

Intentions of concurrent actions are more easily
disentangled.

We can more elegantly write intentions for dialogues
between actors.

The intentions are written in the same formaliam as the
procedures they describe. Thus intiD£ions can have
intentions. Furthermore intentions for side effects are
expressible without recourse to the notion-o? a global
state. The extent to which intentions are checked .t
execution time as opposed to being verified once .nd for
all (making the execution time check superfluous) becomes
at least partially an economic deci.ion. Sometimes [.s
in type checking] it is cheaper to use an efficient
runtime check providing that the possibility of • run
time fault is tolerable.

necause prot.ction is .n intrinsic property of actors, we
hope to be able to deal wIth protection issues in the
same straightforw.rd manner a. more conventional
intention ••

Intentions of data structures are handled by the !!!!
machinery .s for .11 other .ctor ••

The flow chart inductiv ••••• rtion aetbod of Floyd, the
axioaatic rule. for PASCAL of Ho.r.e, and their extension

-100-

PLANNER

to ~Irrui.A.-67 style processf.·s; by Clint are .\11 special
cases of meta-evaluation.

C(:MP1\R1.TIVE :;Cm:::1A'IO:'OGY: The tnt-·ory cf c(>mparat iVf. l'o'''t.'r of
control structures is extendeti anJ unified. The folIo ... :; n'""
hif'rarchy :)f control structures ca.1 be expl:i c;itl:d by -:J

incrementally increasing the power ot the actor t1:a.'smi .. sion
primi4:iv<!.

i·::erative-->recur.s i vt'-->hacktrack-->dctermina te-->uni versa 1

EDUCATIO~: 'l'he mode~ is sufficiently natural and simple that
it can be mdde the concHpt·Jcll basis of the moCel of
computation for stUdents. In particular it can be used as the
concl:!ptu'll l'.ou'31 for a genera) ization of Seymo'.lr Pap·.rt'.­
"little nan" model of LOGO. T.le model becomes a cooperatl.ng
society of "little men" eac"1. of whom carl a1dress others -i th
wholll it is a r;quainte.l and politely request that some task be
performed.

LJ::ARi;Il1G AND J.l0DULARITY: Actors also enable us to ce.3ch
computers mort.' eas11y Lecause t:ley make it possible to
incrementally add knowledge to procedures wit<1o-.lt havinC,J to
r(~write all the kno· ... ledge which t:'le computer alrt~ady
posse8se8. Incremental extensior.'I can be incorporateu and
interfaced in a natul;'al flexible nlanner. Protocol abstraction
[ab8tracting general pro.:;e~ures from the protocols o~ their
execution on particular cases: Hewitt 1969, 1971, Hart,
Hils8on, and FiLes 1972, Sussman 1972] Gan be generalized to
actors so that prccedures with an arbitrary control structure
can be abstracted.

EXTE1;DAllILITY: The moriel providp.s for only one extension
mer.hanl.srn: creating new actors. Ho~ever, this me~hanism is
sufficient to obtain any semantic extension that might be
desired.

PRIVAr.y AND PROTECTIOn: Actors enable IlS to define effective
and efficient p~otect10n Rchemes. Ordinary prot~ction falls
out as an efficient intrinsic property of the model. The
protection is based on the concept of ·usc". Actol;'S can be
freely passed out since they wi 1.1 "'lOrk only for actors which
have the autl1.ority to use them. Mutually suspicious
"m~moryle3s~ subsystems are easily and efficiently
implemented. ACTORS are at least as powerful a protection
n\echani8111 as domains [Schroeder, Heed:"am, etc.], access
control lists [I-1ULTICS], objects (~iulf 1972] a:.d capabilities
[Dennis, Plummer, Lampson). Because actors are localiy
computationally universal and cannot be coerced there is
reason to Ueliev~ that they are a universal ~rotection
raechAnism in the sense that any other protec'b.on ml.~chanis~r. Ci1n
be effIcIently defined using actors. ThA most important
issues i~ privacy anj prQtection that remain unsolved are
those involving intent and trust. Here the con.::epl:. of
~stification plays an ilttport.ant ro Ie. 1\ prc.tected subsystem

at provIdes an answer should be able to justify that the
answer is correct. We are currently conuidering ways j _'1 which
our model can be further developed to address this problem.

-101-

PLANNER

S~~CHRONIZATIONt Serializers provide at least as powerful a synchronIzatIon mechanism as semaphores with no busy waiting and guaranteeu first in first out discipline on each resource. A synchronization actor is easier to use and 3ubstantiate than a semaphore [Dijkstra 1971) since they are directly tied to the control-data flow. Alao it pr07idea more protection because no activator [agent process) can get thru the serializer until the current guard for the aerializer i. given the go ahead and a new guard is provided for each activator that goes thru the serializer.

SIMULT~~EOUS GOALS: The synchronization problem is actually a special case or-tne simultaneous goal problem. Eacn resource which is seized is the achievement and maintenance of one of a numoer of simultaneous goal.. Recently Sussman has extended the previous theory of goal protection by making the protection guardians into a list of pre1~cates which must he evalua~d every time a"\ything changes. WE> have generalized protection in our model by endowing each actor wi t', a scheduler and atl intention. lie thus retain th£ advantagC!s of local intentional semantics. A scheduler actor. allows us to proqran r:XCUSES for violation in case of nee1 and to allow iJEGOTIAT!ON and re-negotiation between the actor which seeks to se1ze another and its schdduler. Rich~r~ Waldinger has pointed out wat the task of sorting ,:nre(~ nYiitbers is a very elegant sUI~le example illustrating the utility of incor.porating taese kinds of excuses for violating protection.
RESOURCE ALLOCATION I Each ac',or has a hankAr who can keep track of the resource~ uspd by thp. actors that are financed by the banker.

S'l'HUCTURIUG: The actor point of view raises sOllIe interesting quesElons concerr.ing the structure of progrUllling.
STRUC'.L'UR};n PROGRAMSI We maintain that actor COIIIIIunlcat1c:m Is well-structured. having 1\0 qoto, :interru,.lt, sempllor.e, or other constructs, they do not violate -the letter of the law·. Sane rOil,lers will probllbly f.-el \.hat some actors exhibit -undisciplinecS· control flow. These distinctions can be f~rmalia.d through the mathematical di.cipline of comparative !:Ichenatoloqy [Patterso, and Hewitt].

STRUCTURED PROGRAUKIHG I Sane authors have advot1ated top down progrADlllInCJ. We find that our own progrUlDinq style can ~ JIlOre accurately cSesoribecS a. -middle out·. We typically .tart with spe~itications for a large task which we would like to prograa. We refine these
specification~ att"pting to create a prograa as rapidly as possible. This initial attempt to .e~t the specifications has the effect of causing us to chan98 the .pecificatons in two way ••

1 t JIlore sr..cifications [tea ture.. which ,,-. originally did not reali.e ar. ~portant) are adcS.d to the detinition of the task.

-102-

PLANNER

2: TI~ sp~cifi~ations ~ru genera~l~~~, specialized,
and oth'.:rwise combin~u to proJuce a tasi~ that is
easier to implement and moru suit~u to our real
needs.

IMPLEMENTATION: Actors provide Ii very flexible impltmltmt.ation
language. In fact we are carrying out the implementation
entlrely in the formalism itself. By so doing we obtain an
implementation that is efficient 'lnd has an effective model of
itself. The efficiency is gained by not having to incur the
interpretive overnead of embedding the implementation in some
other formalism. The model enables the formalism to answer
questions about itself and to draw conclusions as to the
impact of proposed changes in the implementation.

ARCHITECTURE. Actors can be made the basis of the
archItecture of a computer which means that all the benefits
listed above can be enforced and made efficient. Programs
written for the machine are guaranteed to be syntactically
properly nested. The basic unit of execution on an actor
machine is sending a mesBage much in the same way tilat the
basic unit of execution on present day machines is an
instruction. On a current generation machine in order to do
an addition an add instruction must be executed, so on an
actor machine it hardware actor must be sent the operands to be
added. There are no goto, semaphore, interrupt, or other
instructions on an ACTOR machine. An ACTOR machine can be
built using the current hardware technology tilat is
competitive with current generat~on machines.

"How! Now!" criel! the Queen.
"Faster! Fasterl"

Lewis Carroll

Current dev~lopments in hardware technology are making it
economically attractive to run many physical processors in
parallel. This leads to a "swarm of bees" style of
programming. The actor formali!'lm p:-ovidcs .:: coher'!O'nt- method
for ox'ganizing and controlling all these processors. One way
to build an ACTOR machine is to put each actor on a chip and
build a decodin9 network so that each actor chip Can address
all the others. In certain applications parallel processing
c~n greatly speed up the processing. For example with
sufficient parallelism, garbage collection can be done in a
time willci', La proportional to the logarithm of the storage
collected (instead of a ~ime proportional to the amount of
storage collected which is the best that a serial processor
can do). Also the architecture looks very promising for
parallel processing in the lower levels of computer audio and
visual processing.

-All the world's a stage,
And all the men and women merely actors.
They have their exits and their entrances;
And one man in his time plays many parts.-

-103-

PLANNER

-If it waddles like a duck, quacks like a duck, and
otherwise bilhaves like a duck, then you can't tell that it
isn't a duck."

C. ADDING ~ REORGAUIZnlr; KNOWLEDGE

OUr aim is to build a firm procedural foundation for
problem-solving. The foundation attempts to be a matrix in
which real world problem solving knowledge can be efficiently
and naturally embedded. In short the problem is to "get the
knowledge to where the action is." We envisage knOWledge
being embedded in a set of knowledge boxes with interfaces
between the boxes. In constructing models we need the ability
to embed more knowledge in the model without having to totally
rewrite it. Certain kinds of additions can be easily
encompassed by declarative formalisms such as the
quantificational calculus by simply adding more axioms.
Imperative formalisms such as actors do not automatically
extend so easily. However, we are ~plementing mechanisms
that allow a great deal of flexibilty in adding new procedural
knowledge. The mechani .. s attempt to provide the following
abilities.

PROCEC~RAL EMBEDDING. They provide the means by which
knowiedge can easliy and naturally be embedded in
processes so that it will be used as intended.

CONSERVATrvE EXTENSION, They enable new knowledge boxes
to be aaaea ana interfaced without rewriting all the
previous knowledge.

MODULAR CONNECTIVITY, They make it possible to
reorganize the Interfaces between knowledge boxes.

MODULAR E~UIVALENCE' They guarantee that any box can be
replaced ~y one whIch satisfies the previous interfaces.

Actors must provide interfaces so that the binding of
interfaces between boxes can be controlled by knowledge of the
domain of the problem. The right kind of interface pro.otes
modularity because the procedures on the other side of the
interface are not affected 80 long as the conventions of the
interface are not changed. These interfaces aid in debugging
since. traps and checkpoints are conveniently placed there.
More generally, formal conditions can be stated for the
interface. and confir.ed once and for all.

D. UNII' ICAT IOU

We cl.ia that there is a cammon intellectual core to the
following (now somewhat isolated) field. that can be
characteri.ed and investigatedt

digital circuit designers
data ba.e designers
eoaputer architecture designers
progr..-inq langUAge designers

-104-

PLANNER

computer system architects

"Our primary thesis is that there can anu must
exist a single language for software engineering \"hic!l i~
usable at all stages of design from the initial
con(.eption through to the final stage in which the last
bi t is solidly in placE: on some hardware computing
system."

Doug Ross

The time has come for the unification and integration of
the facilities provided by the above designers into an
intellectually coherent manageaule Whole. Current systems
which separate the following intellectual capabilities with
arbitrary Uoundaries are now obsolete.

"Know thyself".

We intend that our system should have a useful working
knowledge of itself. That is, it should be able to answer
reasonable questions about itself and be able to trace the
implications of proposed changes in itself.

"We base ourselves on the idea that in order for a program
to be capable of learning something it must first be
ca~able of being told it. In fact, in the early versions
we shall concentrate entirely on this point and attempt to
achieve a system which can be told to make a specific
improvement in its behavior with no more knowledge of its
internal structure or previous knowledge than is required
in order to instruct a human."

John McCartlly 1958

Representing in a usable way the knowledge about how a
problem solver works is the first step towards teaching it how
to do new things instead of always telling it how to do them
at a very low level. Also it is the oniy way in which the
problem solver can have anything but the most superficial
understanding of its own ;lehavior. The implementation of
actors on a conventional computer is a relatively large
complex useful program which is not a toy. The implementation
must adapt itself to a relatively unfavorable environment. It
illustrates the techniques and difficulties of large software
systems. Creating a model of itself should aid in showing how
to create useful models of other large knowleqe based programs
since the impleme~tation addresses a large number of difficult
semantic issues. We have a number of experts on the domain
that are very interested in formalizing and extending their
knowledge. These experts are good programmers and have the
time, motivation, and ability to embed their knowledge and
intentions in the formalism.

-The road to hell is paved with good intentions."

Once the experts put in some of their intentions they find
that they have to put in a great deal more to convince the

-105-

PLANNER

auditor of the consistency of their intentions and procedures.
In this way we hope to make explicit all tho behavioral
asswuptions that our implementation i..-relyinq upon. The
domaIn 1. closed in the .ens. that the que.tions that can
reasonably be asked do not lead to a va.t body of other
knowledge which would have to be for.alized as well. The
domain is limited in that it is pos.ible to start with a
small superficial model of actors and build up incrementally.
Any advance is immediately useful in aiding and moti-
vating future advances. There is no hidden knowledge a.
tn~ fOnDali.m is being entirely implemented in itself. The
ta.k is not complicated bY unneces.ary bad .oftware,
engineering practices such as the use of gotos, interrupt., or
.... phore ••

E. HIEl\ARCHtES

The model provide. for the following ortbogor.al
hierarchie ••

SCIIEDULINGI Every actor has a .cheduler which :ietermine. when
the actor actually a~ts after it is sent a message. The
scheduler handles problem. of "ynchronization. l~other job of
the .cheduler [Rulif.on] 1s to try to cause actors to act in
an order .uch that their intentions will be satisfind.

IN'l'EN'l'IONS. Every actor has an iTltention which makes certain
thftt ille prerequi.ite. and context of the actor beinq lent the
me ... ge are .ati.fied. Intentions provide a cert.ain ..aunt of
red\:ndancy in the spacification of what i. supposed to happen.

MONITORING: Bvery actor can have monitors which look over each
.... age sent to the actor.

RESOURCE MUlAGEMENT: Every actor has a banker which monitor.
the use 0 f .pace and tirle.

note that eveVI actor haa ill of the above abilities and
that each i. dOM v a an actorl

-A .low IIOrt of country 1- .aid the Queen.
-Now, hera, you .ee, it take. all the running you
can do;-tO keep in the eaa. place. If you want to
~et .omewhere el •• , you must run ~t least twice a.
fast a. thatl-

Lewi. Carroll

The previous .enteace may worry the reader a bit a.
she [he] might envisage an infinite chain of actions [such as
banking) to be neces.ary in order to get anything done. We
short circuit this ~ only requiring that it apiDar that each
of the above activities i. done each time an.c r is sent a
..... ge.

-106-

PLANNER

"Tllert.>'s 1:0 use trying," S!lt! said: "one
ca,1't'. ul;'li.we impOS3i~)1~ thi.ngs."

"I daresay you haven't hau muci. pr..,.~ti ee,"
sai d the Queen. "When I WdS you'" age, I always did
i':" for :lalf-<ln-hoUT oJ. day. Why, s('lml;!tif"\'~s I'v€;
believed as many a:: ~;ix im~}os,>ilJle thL'qt3 b€.fore
b.';eakfast. "

Lewis Carroll

r:ac~ (if th~ acti."i ties is ::'ocally d~fi:4ed and executed at
the point of ir.vQe'ation. "'his allow!! tile ma:< imum possible
uegree of parallelism. Our model contrasts s\~rohgly \'1i t .
('x c.rins 'i.e ~uanti.ficCt tional ca :culus mode 1.s \·,hich ar"! f()rl.ed
into global noneffec:ti'!';: statem~'nts in ord.3r to characte~.·ize
tt.a !:lemantics.

We consider language definition techniques [such as
those used witt. t!1e Vienna ::>efinition Lclnguage] that requir.t!
the semantics be dt!fined in terms of the gloLai computational
state to be harmful. Formal penalties [such as the frame
problem and the definition of simultaneity] must be paid even
if the definition only effectively modifies local parts of the
state. Local intrinsic models are better suited for our
purposes.

F. SYNTACTIC ~

"What's the good of Mercator's North Poles and
Equators,
Tropics, Zones and ~eridian Lines?"
So the Bellman would crYI and the crew would reply
"They are merely conventional signsl"

Lewis Carroll

Thus far in our discussion we have discuBsed the semantic
issue. intuitively but vaguely. We would now like to proceed
with more precision. Unfortunately in order to do this it
seams necessary to intrOduce a formal language. The precise
nature of this language is relatively unimportant so long as
it is capable of expressing the semantic meanings we wish to
convey.

-Use throwaway i.plementations.­
Alan Kay

-But make each one good enough to tell you what you
need to know to make the next!-

Tony Hoare

Por some years we have been constructing a series of
languages to express our evolving understanding of the above
semantic i •• ues. The latest of these is called PLANNER-73.

-Is it garbage yet?-

-107-

PLANNER

Meta-syntactic variables will be underlined. We ahall
assume that the reader is familiar with advanced pattern
matching languages such as 5NOBOL4, CONVERT, QA4, and PLANNER-
71.

Consider the problem of adding 2 to x where x denotes 3
We will have an actor 2 which given + and x will send us
back the sum. It may seem somewhat strange to have 2 as an
actor but this is the point of view taken by Alonzo Church in
hi. paper on the lambda calculus and some string processing
interpretive languages operate in this way. Also the SMALL
TALK language of Alan Kay has taken up this view and shown how
it can be used to systematize type coercions. We will aenote
sending 2 the + and x by (2 + x). We want to send the actor 2
only one message in order to accomplish the addition. So we
shall agree that (2 + x) really means ('2 [+ xl') where [+ xl
is & tuple whose first element is + and whose second element
is ~. The actor 2 will need to be able to convert x into its
denotation 3 so we shall need to s.nd it an environment E with
x-3 to tell it hOW to do so. Thus the sum can be further
analyzed to be

(-> ('eval -E)
("2

(tby-expression
[+ xJ
('environaent B»tt».

Reflecting on the aessage sent 2, we realize that the actor 2
needs to be told a continuation C to sead the answer when it
finishes and so we agree that the sua can be further analyzed
as

(-»> (feval -E (fcontinuation -e»
("t2

('transmission
('by-expression

(+ xl
E)

('continuation e»tt.»

At this point we shall not carry our analysis of the sua any
further but instead shall reflect on what we have done. We
shall u .. (sl s2 ••• sn) to nenote the finite sequence sl, s2,
• •• sn. A .equence sls an actor where (s i) is el ... nri Ol
the iiquenee s. Por exa.ple «(a (2 + 3) Dl-2) will aend -
·back·· 5. We-w111 allow the possibility that the expresaions
enclosed between "(" and "J" .. y be evaluated concurrently.
We us. "(. and ")" to denote the s1multaMOus synchronous
tran_ission of a sequence of _saages 80 that (1.1 1.2 ••• An)
will be defined to be (tAl· [1.2 ••• An) t) • The sequinee -
expression (tal a2 ••• ant) \read a;--al then a2 ••• finally
send back an"rwITl be mluated by evaTuatingA'l, a2, ••• ,
and an in ;-equence and then sending back ("returniraqtr] the
value-of an aa the message.

Idennfiers can be created by the prefix operator -. Por
example if the pattern ... is matched with !., then a new
idenUfier ia created ana bound to !..

-108-

"But 'glory' do~sn't mean 'a nice
knock-down argument,'" Alice objected.

PLANNER

"When I use a \Jord," Humpty Dumpty sal."', in
rather a scornrul tone, "it means just what I choose
it to mean--neither morl; nor less."

"The question is I" said Alice, "w'letner you
~ make vlords mean so many different things."

"The question is," said Humpty Dumpty,
"which is to be master--that's all."

Lewis Carroll

Humpty Dumpty propounds two criteria on the rules for names:

Each actor has complete control over the names he uses.

All other actors must respect the meaning that an actor
has chosen for a name.

We are encouraged to note that in addition to satisfying the
criteria of Humpty Dumpty, our names also satisfy those
subsequently proposed by Bill Wulf and Mary Shaw:

The default is not necessarily to extend the scope of a
name to any other actor.

The riqht to access a name is by mutual aqreement between
the creatinq actor and each accessing actor.

An access right to an 3ctor and one of its acquaintances
is decoupled.

It is possible to distinguish different types of access.

The definition of a name, access to a name, and
allocation of storage are dec0upled.

The use of the prefix - does not necessarily imply the
allocation of any storage.

One of the simplest kinds of ACTORS is a cell. A cell
with initial contents V can be created by evaluating (cons­
cell V). Given a cell-x, we can ask it to send back its
contents by evaluating Tcontents x) which is an abbreviation
for (tx ('contents)'). For example (contents (cons-cell 3»
evaluates to 3. We can ask it to change its contents to v by
evaluating (x <- v). For example if we let x be (cons-ceIl 3)
and evaluate-ex <= 4), we will subsequently find that
(contents x) will evaluate to 4.

The pattern (by-reference P) matches object E if the
pattern P matches (cons-cell ~); i.e. a "cell" [see below)
which contains E. Thus matchIng the pattern (by-reference -x)
against E is the same as bindinq x to (oon&-oell E), i.e. a
new cell-which contains the value-of the expression E. We
shall use -> [read a8 -RECEIVE l-lESSAGE-] to mean an actor
which is reminiscent of the actor LAt-mDA in the lambda
calculus. For example (-> ~ body) is like (LAMBDA x ~1Y)
where x is an identifier. An expression (-> pattern ~ is
an abbreviation for

-109-

PLANNER

(--->
(.transmission

("'c
~attern

'contInuation -c»

<ttransmis.ion rodX
<tcontinuat on none»"'»

where __ a> is a more general actor that, unlike a>, does not

~mplieitly bind the continuation.
Evaluating

<'c-> pattern body) ~-me •• age')' i.e. sending !h!­
message to

(-> pattern body),

will attempt to match the1e.saie against £!!~. If the­
alessage i. not of the rona spec fied by pattarn, then tlie""
ac £Or 1.8 NOT-APPLICABLE to the-mes.aie. It' the-me •• a:;e
matches pattern, then bod1 rs-evaiua id.

EvalaatIng (' (c •• es !!.!! ... tn) arg') will .and ll.
the me •• age arg and if it is not applicable then it will .end

Q the me .. age ar" etc. until it Unds one that is

applicable. The age (tnot-applicable) is sent back to the

caapl.lnt-dept if none were applicable. Evaluating (,(c ••••

{!! f2 ••• !al) arg,) will .end !! the age arg, ••• , and

send~ the qe .rg concurrently.

Abbreviations

~he following abbreviations will be used to improve

readability a

(rules object cl.us.s) for

('(cas •• claus ••) obj.ct,)

(let
(

(xO - !!pre •• ionO)
[~ • expre •• lonl) ...
(xn - expre •• ionn)}

bodx)-for

«-> , .. 0 -xl ••• -!.n) body)
expr ... rono
mres.ronl ...
expre.sionn)

-110-

PLANNER

G. ~ TRANSMISSION

The world's a theatre, the ~arth a stage,
\iilicll God and nature tio with actors fill.

Thomas Heywood 1612

Consider the event of transmitting an M to a target T.

('''! ~''')
If the target ~ is the following:

(--->
the:tattern-for-the-transmission
the- ody) --

then the-body is evaluated in an environment where the-pattern
for-the-transmission is bound to M.
--- Suppose that we have a TROUP~ of actors Tr with a
distinguished subset C known as the CAST. The-cast C is
distinguished by being able to direc~interact immediately
with the audience. We define an EVENT to be a quadruple of
the form [T M A EC] where T is the-tirget, M is the message, A
is the actTvitor-ragent, process] propelling the message, and­
EC is the event count of the activator A. We define a HISTORY
to be a strict partial order of events with the transit1ve
closure of the partial ordering -. [read as PRECEDES] where

[tl ml al eel) -~ [t2 m2 a2 ec2] if

or

al • a2 and eel < ee2

ml is created in the action [tl ml al eel]
and {ml} intersect {t2 m2} is nonempty.

The above definiton states that one event precedes another if
they have the same activator and the event count of one is
less than the evt:;nt count of the other. A history will be
said to be WELL-FORMED if any membex of the troupe which is
not a member-o! the cast is first sent to a member of the
audience befor' being the target of the first event of an
EXOGENOUS activator. The intent of this restriction is to
prevent the audience from arbitrarily affecting the internal
working_ of the troupe and to further clarify tile nature of
the boundary between the troupe and its external environment
as represented by the audience. We will assume that all our
histories are well-fo~ed. e allow the range of event counts
for an activator [agent, process] to be a [possibly infinite)
seqment of the integers [including negativd integers]. The
definition can be generalized to cover events w'lich have
different activators by analyzing how activators are created
and absorbed. The relation -~ can be thought of as the -arrow
of time- which we require to be a strict partial order. That
is, there is no event ~ such that ~-~~ is the casco

-111-

PLANNER

The constraints on partial orders given below have

been extracted from a forthcoming paper -Behavioral Semantics

of Actor Systems" by Irene Greif and Carl Hewitt. Every

hist.ory involving a cell c satisfies the following
... -onr..tL"aints:

Guaranteed Reply

Suppose
An event E of the form [e (Itransmission (Icontents)
(Icontinuation r» A EC] of of the form [c
(ftransmission [<- x r] (fcontinuation r» A EC] is in

the history.
Then

E -. [r? A EC'] is in the history.

Retrieve ~ ~ contents stored.

Suppose
Let 81 be of the form (c (ttransmission [<- x)

('continuation rl» 1 1) and 12 be of the form [c
('transmission ('contents) (fcontinuation r2» A
If 11 -. E2 is in the history and for ecary event
the history such that I is of the form c
('transmission [<- y] 1) 1 1) then E -~ El or 12

Ee) •
1 in

-~ E.

Then
E2 -~ [r2 x A EC') is in the history.

Certain pr~1tive actors such as SERIALIZERS (which only let

one me •• age thru at a time) impose additional constraints on

the partial order. Every history involvirlC) a serializer s

satiefies the following constraints:

Suppose
~ ::'utting ~ ~.

Then

two events of the following form are in the history.

ls (.thru rl) Al Eel) -~ [s (tthru r2) A2 Ee2)

if E2 • [r2 (Iguard g2) A2 Ee2') is an event in the
lUstory then there are events El and E3 in the hiatory
such thar-

El • [r1 ('guard gl) Al Eel')
E3 • [g1 (tunlock) ? 1)
E1 -~ E3 -~ E2

Guaranteed I:P1Y provided no activa~or
lock. e •• rlaiI.er fOrever. --

Suppose
B1 • [s ('thru r1) Al EC1) is an event in the
history and that for eVEiY event E of the fora [s
(.thru r) A Ee) either --> E or there are

Then

events [r (Iguard g) A ECI) and 19 ('unlock) 1 1)
in the history.

there is an even~ [rl (tguard g1) Al Eel') in the
history.

-112-

PLANNER

Notice that we do not require a definiton of global
s~ultaneity, i.e. we do not require that two arbitrary events
be related by -~. An event El can CAUSALLY AFFECT an event E2
only if El-~E2. We can draw-a fixed but otherwise arbitrar~-­
boundary-around a troupe of actors TP in order to study ffie1r
behavior with respect to an externarconfiguration of actors
[calleel tne AUDIENCE). Where the bowldary is drawn will
depend on the rdason for attempting to isolate tht: behavior of
the troupe. He define the BEHAVIOR of a history with respect
to an audience to be the sul1partial ordering of the history
consisting of those quadruples [T M A ECl where the target T
is an elemelit of the audience or-trie-quadruple is the first­
event of an EXOGEN'OUS activator. The REPERTOIRE of the
troupe TP is tnc class of all Ule behaviors of TP · .. i th respect
to all audiences for the fixed external boundarY7 The
REPERTOIRE of a troupe defines what the troupe can do as
opposed to how it performs. Two-iCtors will be said to b~
EQUIVALENT Irthey have the sarne REPERTOIJU;. For example
teons-cell 5) is equivalent to «cons-cell 3) <- 5).

We can name an actor defined by 0 with the name N in the
body B by the notation (labels {[N <--D)} B). f.fore precisely,
the behavior of the actor (labels-{[f -<- TE f)l} B) in the
body B is defined by the MINII1AL BEHAVIORAL-FIXED POINT of (E
f) i.e. the minimal reperto1re M such that (~-~In the
caee where M happens to define a function, it will be the case
that the repertoire M i. isomorphic with the graph [set of
ordered pairs) of the function defined by M and that the graph
of M is also the least (lattice-theoretic) fixed point of Park
and Scott. We shall use «- !~) as an abbreviation for

(label {[! <- ~1} !). For e~ample

factorial
{cases

[(-> (0) 1)
(-> (-n) (n * (factorial (n - 1»» 1»

3) evaluates to 6

H. ~ EFFECTS

It is so_times necessary to be able to preserve the
complete history of events. The only events in our model
occur when an actor is sent a call. Intuitively a SIDE EFFECT
has occurred if there is same question for an actor-wnIch has
a different answer when asked of the actor on two d1fferent
occasions. A side effect can be localized in space-time
around an event E by the followinq mechanism:

There is an actor Tl and messaqe Ml such that IF the event
El- (Tl Ml Al EC1] [where as before Al is an activator and
rr is the event count for the activator) were to happen
before E, then some later event for activator Ai would have
a dIfferent transmission than IF E1 happened ~ !.

-113-

PLANNER

Siue effects destroy information. Therefore the actor
transmission primitive must not in itself necessarily have
side effects. The side-.rrects in our model stem from other
actors with aide effects, they are not derived from the actor
transmission primitive.

I . MANY HAPPy RETURNS

Many actors who are executing in parallel can share the
same continuation. They can all send a message [-return-] to
the .ame continuation. This property ol actors is heavily
exploited in meta-evaluation and synchronization. An actor
can be thought of as a kind of virtual processor that ia never
·busy· [in the sense that it cannot be sent a message).

The basic mecbanism of sendinq a mea sage preserves all
relevant information and i. entirely free of aide effecta.
Hence it i. moat suitable fOr purpo.eilOl semantIc defInition
of special ca.e. of invocation and for debugging situations
where more information needs to be pres.rved. However, if
fast write-once optical memori.s are developed then it would
be suitable to be implemented directly in hardware.

The following is an overview of what appears to be the
behavior of the process of an activator A tranam1tting a
.... ag. M to a target 'l'.

11 Call the bank.r of A to approve the expenditure of
r.sourc.s by the caller.

2 I The banker will probably eventually send a messaCJe to the
scheduler of T.

31 The scheduler will probably eventually send a message to
the monitor IUnager of T •

.. : 'the monitor manager will probably eventually !!lend a
aessage to ~~e intention manager of T.

Sa The intention manager of T will probably e,'entually send
the m~.sage M to T.

61 The activator A will finally .tteapt to get some r •• l work
done by doing T' s thing.

Th.re are .ever.l t.portant things to know about the
process of sending a mess.ge to an .ctor.

1: Actor transmission is • universal control primitive in the
sens. that control operation. such .s functIon calis,
iter.tion, coroutine invoc.tions, teaource s.i~lres,
.cheduling, synchronization, and continuous evaluation of
expressions .r. speci.l c •••••

21 Actors can conduct th.ir dialogue directly with e.cb
other, they do not h.ve to set up saa. InEil1lliidiary such ••
ports [!(ruter, Balser, and Mitchell) or possibility lhts
[McD~rmott and Sus.man] which act as pip.. through which
convers.tion. aust be conducted.

-114-

PLANNER

3: Actor transmissio:'l i.s el-,t.irely free of 'ii.!t' ~ff'-'l~t5 [such
as those in the message mech."nisln ortn..,. r.urrent f~l\l,L T}\,U:
machine of Alan Kay, in the port machanislII of Kruter and
Balzer, and in possibility lists of McDermott and Sussman]
Being free of sille effects ~llow9 us a maximwr. 0 f pilr.\ll "U.SJ:!

anJ allow. an actor to be engaged in several cl)n"er5a~ions at
tl:e sallle time wi t-.hcut becoming c-:>nfusel.l.

4: Actor ,transmission makes no pres~pposition that the actor
s,..,nt. the mC'ss<1.gp. "lill ever send -:)acl~· a message or that
wback- is even defined. ":he uniu.l.re~tiollal nature of scndin'J
messages enables us to define l.teration, monitors, coroutines,
etc. straightforwardly.

5: The ACTOR model is not an [envirorunent-po1.nter,
instruction-pointer] mo:tir such as th," COI\,TOUR moclel. 1\
continuation is a full blown actor [with all th, rights and
privilegeR), i~ is not a I,rol]ram cC'unter. There are no
instructions [in th~.:!nse of prescnt clay machilles] in our
model. Instead of instructions, an actor mac:hine has certain
primitive actors built in hardware.

6: All of the control constructs listed below are universal
in some .ense; but the actor transmission primitive in not
an immediate special case of anyone of them.

6.1 GOTO is not as general because it does not allow a
message to be sent to the target.

6.2 FUNCTION CALL is too specialized because it always
binds a continuation to the sender.

6.3 SIMULA-67 CLASS INSTANTIATION is too specialized
because a class cannot be further instantiated and
because control must return to the instantiator
immediately after a detach of the class instance. The
only ot~er way out of th~ class is ~ use a RESUM~
statement. RESUME [the SIMULA-67 coroutine primitive)
is separate from class instantiation and unfortunately
does not allow a lies sag::! to l::~ passed to the process
being resumed without a gratuitous side-effect.

6.' Acto~ transaission at this level is very simular to
the objects constructed by the J operator of Peter Landin
and the ESCAPE construct of John Reynolds. The major
contribution here is the observation that the function
call can be defined as a special case. Major differences
show up at the next lower level where the proteenl with
the underlying activator [agp.nt process) is made
explicit.

All of the above control con.truct~ are trivially special
cases of actor transaission.

-115-

PlANNER

J. DATA BASES

Data uases are actora that organise a .et of actors for
effici("lt retrieval. There are three priJDitive operations on
data oases I PUT, GET, and r.~E. A new virgin default c.ata
base can be created by evaluating (virgin). If we let W­
(virgin), then W ",tIl be a virgin world. We can put an actor
(at John airport) in th~ world W by ev.luating (use-world W
(put (nt John airport»). We could add further ~nowledge by
evaluating

(use-world w (put (at airport Boston») to record that
the airport is at Bo.ton.

(use-world W (put (roity Bo.ton») to record that Bo.ton
is a city.

I f the constructor EXTENSION ill paased a worl,l w then it will
create a new default world which is an extension of w. For
ex_ple

(let {[WI • (extension W)]}
(use-Mlrld w'

(put
(on John (flight J4)l»)

will bind w' to a new world in which _ have supposed that
John is on flight 134. '!'h.e world • is unaffected by this
optlratlon. On the other hand the exten.ion Wt'.Jrld is affected
if we do (use-world W (put (hungry John»).).

World. c.n a.k the .ctor. put in tlMa to index th .. el vee
for r.pid retrieval. St.ple retrieval c.n be done using
paA-tern.. Por ex_plel

(get (.t 1 1) ('then Receiver) ('el .. Alternative»

put. Receiver in an e~vironment to retrieve .11 the actors in
W which lIlatch the pattern (at 1 1). Now GET will thus
retrieve either (at .irport Boston) or (.t John airport). We
do not want to have to explicitly store every piece of
knowledge which we have but would like to be able to derive
conclusion. fro. Wh.t is .lre.dy known. We can di.tin9U!.h
.everal different cl of procedure. ~r deriving
conclu.ion.. The .ctor >-> (re.d •• -ON TRIGGER-] with the
.yntax

(>-> pattern-~-tr19ger body)

creates. PLAM th.t c.n be'invoked by pattern directed
invooation-SY-. trigger which .. tobe. p!ttern-~-trill!f.

-116-

PLANNER

K. PATTERN DIRECTED INVOCATION

Plans communicate thru making assertions, erasures, and
denials using the world machinery. We assume the existence of
a qenerator ANONYMOUS whicn generates new anonyr.lQus
individuals anonl, anon2, etc. which have never before been
encountered. To show the utility of such a generator
consider the problem of proving (subset x z) [x is a subset of '
z] wilere we have a world which contains I

(subset x w)

(subset x y)

(subset y z)

(subset (union x s) t)

[prove-subset <-
(>-> (prove (subset -a -c»

(prove (subset a -b)
(Ithen

(prove (subset be»»)]

[prove-subset-union <.
(>-> (prove (subset aa (union -a ?»)

(done»]

Tne problem is solved by "wishful tilinkinq." In order to
find b such that (subset x b) we let b be an anonl which is a
never-before encountered individual which we wish to have
certain properties. Then we note that anonl ~i9hj be w. But
we are unable to prove (subset w z) so we reconS1 er and see
that anonl might be y. We successfully prove (subset y z) ~~d
so the problem is solved.

Now consider the problem of provinq (subset x t). As
above let b be anon2 to try to satisfy (subset x b). We find
that neither w nor y work out as anonl so we try the plan
prove-subset-union. Thus it is sufficient that anon2 be
(unio .. x ?) where·we don't know what? is yet. We hopefully
continue tryinq to show that (subset anon2 t) and find that we
would be done if only anon2 were (subset x s). This is
satisfactory if we let ? be s and so we aave solved the
problem.

L. McCARTHY AND THE AIRPORT

We would like to illustrate some uses for statements
about the possibility of McCarthy being at the airport to
illustrate the point that what counts is not whether some
particular statement is TRUE or FALSE but rather the uses to
which the statement can be put.

McCarthy i. at the airport.
(put <at MCCarthy airport»

-117-

PLANNER

If a person is at the airport, then the person miqht take a
plane from the airport.

[put-at <-
(>-> (put (at -per.on airport»

(put (miqht (take-plane-from peraon airport»»]

Mccarthy is not at the airport.
(deny (at Mccarthy airport»

If a person is not at the airport then he can't take a plane
from the airport.

[deny-at <-
(>-> (deny (at -peraon airport»

(put (can't (take plane from person airport»»)

It is not known Whether UcCarthy i. a. the airport.
(erase (at McCarthy airport»

If it is not known whether a person is at the airport then
era.e whatever depends on previous knowledqe that the person
is at the airport.

[era.e-at <-
(>-> (erase (at -person airport»

(find-all (depends-cn -s (at person airport»
('then (eras •• »»]

Get McCarthy to ~e airport.
(achieve {(at McCarthy airport)})

TO achieve a person at a place.

car.

rind the present location of the person.
Show that it i. walkable from the pre.ent location to the

Show that is drivable from ~e car to the place.

[achieve-at <-
(>-> (achiev. (at -per80n -place»

(achieve
(find (at per~n -pre.ent-Iocation)

{.then (.how (walkable pre.ent-location
car)

(I then
(.how (4rivable car place)

('el.. (.. ke-plan (at person
place»»»»»)

Show that Mccarthy is at the airport.
(show (at McCArthy airport»

-118-

PLANNER

To show that a thing is at a place show that the thing is at
some intermediate and the intermediate is at the placE:.

[show-at <-
(>-> (show (at -thing "place»

(sho~ (at thing -intermediate)
(,then (show (at intermediate place»»)]

The actor show-at is simply transitivity of at.

M. LOGIC AND PLANNING

-It is behaVior, not meaning that counts.-

Denotational semantics as formalized by Tarski for the
quant.:ificational calculus is one of the crowning ac"ievements
of mathematical logic. It has clarified the semantics of
ordinary mathematical theorems and led to the development of
model theory '-Ihich is a flourishing mathematical field in its
own right. We contend that it is less satisfactory as a
semantic base for a theory of action and change. In this
paper we formulate the beginnings of a semantic theory based
on behavior instead of denotation. We then make some
prelImInary remarks on the relationship between behavioral
semantics and denotationa1 semantics.

A satisfactory theory for the representation of knowledge
should have one unified totally integrated formalism and
semantics. For example we should not have one formalism and
semantics for expressing declaratives and a separate formalism
and semantics for expressing procedures. For some years now
we have been working to achieve this goal. The record of our
progress is published in the Pro~eedings of the International
Joint Conferences on Artificial Intelligence beginning with
the first conference in 1969. In the course of this research
we have developed the Thesis of Procedural Embedding of
KnOWledre which is that -knowledge of a domain Is
IntrIns cally bound ~ with the ~rocedures for its use.- An
important coroliary IS tnit '£'f1e unC!amental"'tecnnrque-C?f
artificial intelligence is Automatic Programming and
procedural Knowledge Base ConstructIon.

We would lIke £O-.EOW hOw the behavior of formulas in the
quantificztional calculus using actors and how the rules of
natural deduction follow as special cases from the n • .:chanism
of extension worlds. In this way we can demonstrate new
DEDUCTION is a special case of COMPUTATION.

-18 Model theoretic 1'nUTIl a sufficient foundation on which
to Base semantics for the Representation of Know1edge?-

The model theoretic definition of TRUTll for the
quantificational calculus formalized by Tarski [denotational
semantics] is very smooth but we contend that it 910sses over
semantic distinctions that are crucial for the representation
of knowledge.

We find that the deductions of plans in PLANNER often
carry more conviction (in the sense of Richard Weyhrauch) than
proofs in the quantlficational calculus. Ttlis is because our
minds are better at grasping the constructive re1ationsr.ips

-119-

PLANNER

between the plans than the global noneffective relationship
established uy asserting that a set of axioms is true. Two
plan, can attect each other only if th£re is a causal chain of
"wheels and cogs" connecting each other. Th.se causal chain.
are formalized in the definition of HISTORY for actors given
above. We seam to be able to design, control, and ,e~ug sets
of plans better than sets at axloma. The history a ussell's
Paradox and the question of the independence of the Axiom of
Choice illustrate some of the kinds of problems with
denotational semantics. ~~ point ia further illustrated by
the several inconsistent to~ulation. at the "Blind Hand
Problem" that have been produced in the quantificational
calcul' 's" Their inconsistency has been discovered almost by
accident as proof. by contradiction get shorter and shorter
until the negation of the consequence is tound to be
superfluous to the proof. People are quite tolerant of minor
inconsi.tencies and. the inability to tolerate any
inciona·htency at all in formulating problems is a. sign of
exceasivo 1181Untic riqidit," In qeneral we teel that a
contraaIctIon I. evIdence or a bu~ in one's plan~ or in the
plan which is beinq constructed an that to satisfactorily
resolve the buq it may be necessary to ex .. ints all the
assumptions beinq made in.tead of only the moat recent one.
Curzantly there are no good ways to debuq sets of axiom.
whereas there ia a well established and rapidly developinq
technology for d.bugging procedur.s.

Another aymptom of the probl •• with denotation&!
.... ntic. ba. been its failure to capture the notion of
intuitive .emantic entailaellt. Given that the moon is not
.. de of gre.n chee.e, the following propo.ition is valid in
the quantiticational calculu ••

"'The .oan ia made at green chees.' implies 1+1~2-

WarS. yet, the following .entence is al.o valida

·'The moon i. not mad. ot green obe ••• • implies 1+1-2-

The problem i. t~t denotAtional .emantic. detin.y (X IMPLIES
Y) sol.ly in t.ras of the denotation [tr.lth value] o~ X and Y
Inateaa of in.isting on a cau.al connectior. from X to ~. -
Logical iaplicatlon 18 a useful concept in it. own ri,nt ao4
we will fomulate its behavior below, but it is a .erl.Oua
limitation if atronger .are intuitive forma of entailmer.~
cannot be ntic.Uy (tilIllid. Th • .,st natural way to _ite the.. a_ntic entailaent. app.ar. to be a. Procedural plu
sch ... ta that illpl.ent particular cau.al entailments.

We r.ontend that deduction i. be.t reqard.d a. • .pecial
ca •• of cnutatiOIl. consia.r a fozoaula of the tom (every
phi) whi •• ana tii&t for every x .e have that (phi x) 18 the
ca... Th. procedural _aning of the fOZlaula i. a PIANNBlt
SCHEMA for bow it can be used. The fomula has two liportant
ua.s. it can be .s.ertec1""'iiid' it can be proved"

OUr behavioral definitions are ~niscent of cla.slcal
natural deduction except that ve have four introduction and
eliaination rul •• [PROYB, DISPROVE, MSEIl'l, and DENY) t:o give
u. aore flexibility-rn-1eailnt with ft89atIOa. ----

-120-

[every <-

"Then Logic would take you by the tnroat,
and force you to do itl"

'"'1:eWTs Carroll

(-> ["'phi]
(cases

(some <-

[(-> (lprove)
(let

([g - (anonymous)]}
(assert (object -g)

('then (prove (phi g»»»
(-> (,disprove)

(disprove (phi -x»)
(-> ('assert)

(assert
(>-> (assert (object x»

(assert (phi x»»)
(-> (tdeny)

(let
{[g - (anonymous)]}
(assert (object gJ

('then (deny (phi g»»»
(-> (,display as)

(s
(pr int-open • (.)
(print-string ·every·)
(print phi)
(print-close .).»)]»]

(-> [-phil
(cases

[(-> (tprove)
(prove (phi -x)

(Ithen (prove (object x»»)
(-> (tdisprove)

(let
{[g - (anon~ou8)]}

(assert (object g)
('then (disprove (phi g»»»

(-> (tassert)
(let

{[g - (anonymous)]}
(assert (object g)

(,then (assert (phi g»»»
(-> (tdeny)

(E.lsert
(~-> (assert (object -x»

(deny (phi x»»)
(-> (tdisplay -s)

(9
(pr int-open • (.)
(print-string ·some·)
(print phi)
(print-close .).»»))]

-121-

PLANNER

PLANNER

[and <-
(-> ('and -conjuncts)

(cases
{(a> (tprove)

(rules conjuncts
[(-> (empty)

(done))
(-> (land -conjunct -rest-conjuncts)

(all-conjuncts

(-> (Iassert)

('conjuncts
(prove conjunct)
(prove (tand rest­

conjunctst»»)]»

(rules conjuncts
[(-> (empty)

(done))
(-> ('and -conjunct -rest-conjuncts)

(all-conjuncts
('conjuncts

(-> (fdiaprove)

(assert conjunct)
(assert ('and rest­

conjunctst»»»))

(rules conjuncts
[(-> (empty)

(not-diaproveable»
(-) ('and -conjunct -rest-conjuncta)

(aa.e-diajunct
(tdisjuncta

(-> ('deny)
(rules conjuncts

(extend-world (disprove
conjunct))

(disprove
(tand rest­

conjuncts'»»»))

[(a) (empty)
(not-deniable))

(-> <'and -conjunct -reat-conjuncta)
< __ -disjunct

(tdisjuncta

(-> (,diaplay -a)
(s

(extend-world (deny conjunct»
(deny

('and reat­
conjunctat»)})]»

(print'!'0p8n • (.)
(print-string ·and·)
(print-el .. ent conjuncta)
(print-cloae .).»)}»]

-122-

PLANNER

[or <-
(-> (tor -disjuncts)

(cases
{(a> (;~prov~)

(rules disjuncts
[(-> (empty)

(not-proveaole))
(-> ('or -disjunct -r~st-Jisjuncts)

(cover-splits
(.dis j Ullcts

(-> (tassert)
(rules disjuncts

(prove disjunct)
(prove ('or rest­

disjunctst) » »]))

[(=> (empty)
(not-assertable»

(-> (tor -disjunct =rest-disjuncts)
(make-spli ts

(tdisjuncts

(-> (tdisprove)
(rules disjuncts

(-> (empty)
(done))

(extend-world (assert
disjunct))

(assert ('or rest­
disjunctst»»)]»

(-> ('or -disjunct -rest-disjuncts)
(all-conj uncts

(tconjuncts

(-> (.deny)
(rules disjuncts

(-> (empty)
(done))

(disprove disjunct)
(disprove (tor rest­

disjunctst»»)]»

(-> ('or -disJunct -rest-disjuncts)
(all-conjuncts

('conjuncts

(-> (fdisplay -s)
(s

(deny disjunct)
(deny ('or rest­

disjuncts'»»)]»

(print-open • (.)
I~rint-.tring ·or·)
(print-element disjuncts)
(~rint-close .).»)}»]

-123-

PLANNER

[intuitionist-not <­
(-> [-phi)

(cases
{(-> Ctprove)

(disprove phi»
(-> ('a.aert)

(deny phi»
(-> ('display -8)

(s
(print-open W(W)
(print-atring "intuitionist-not")
(print phi)
(print-cloae W)"»)}»]

We find ourselves convinced that the plans defined above nave generally useful behaviors and WDuld expect them to be a standard part of any actor aystem. However the plan defined below does not carry the same conviction tha tit always proceeeds in-a-uaeful or justifiable mannera
[classical-not <-

(-> [-phi]
(caaes

{(-> (tprove)
(diaprove phi»

(-> ('disprove)
(prove phi»

(-> ('aasert)
(deny phi»

(-> ('deny)
(aaaert phi»

(-> (.display -a)
(8

(print-open W(W)
(print-atring wclaasieal-not")
(print phi)
(print-close W)W»)}»]

We find that it is extr_ely dubious that it is always permissible to DENY (NOT 'ht? simply sy ASSBRTING Rji. fa be able to DISPROVE (NOT phi siMply being able to OVE phi is equally Wlconvineinq.

"Garbaqe in--qarbage out. w

'!:ven with the dubious principle -.bodied in our d~finition of CLASSICAL-NOT we atill ha~n't defined all the behaviortbat the quantifi~.tional calculus conaiders valid. In the quantificatiol~l calculus fro. (and theta (not theta» fiE atat ... nt is de4ueii)le no .. ttar how iiOii'iensicall"1'lle o uwinq plan schemata re.llae this behavior [although in our view this behaviour is UIIual1y quite haZ1lllful] I

[qiqo <-
(>-> (prove -phi)

(prove
-theta

-124-

PLANNER

{'then {prove (not t~eta»»)]

In certain contexts we woulu be willing to accept the
following plan schemata although it does not always preserve
cau",.l chains.

[indirect-proof <-
(>-> (prove (not -phi»

(extend-wor ld
{assert phi

('then
(provE! -theta

(.then (prove (not theta»»»»)

In a similar vein we teel tl~t there are two nethods for
defining sets that carry conviction a

By s?ecityinC] a qenerating procedure w:'lich can generate
all the elenwntll of th.3 set.

By specifying a deciding procedure which is capable of
deciding for any gIven actor whether it is a member of
the set or not.

In some theories of computation [e.g. recursive !unc1:ion
theory), it can be shown that the second is a specinl cane of
the first. HowevAr, we do not s~e any reason to suppose that
it is always possible to generate all actors.

We would like to show how to use the above definitions t~
llrove a staple theorem of the qua.ltificational calculus: "If
for aome x such that for every y we have (p x y) then for
every y there ift some x auch that (p x y)."

(implies
(!'JOIOle

(-> -x
(every

{a> _y

{every
(-> -y

(some

(p x y»»)

(-> -x
(p x y»»»

The proof is accomplished in the following way:

Create an extension of the current world and call it
reality

as.ert (some (-> -x (every (-> -y (p x y»») in reality
let x - anor.l

as.ert (object anonl)
assert (every {a> -y (p anonl y») in reality
assert (>-> (a.sert (object -y»

(assert (p anonl y»)
prove (every (-> -y (some (-> -x (p x y)l»)

-125-

PLANNER

put (prove (every (-> -y (some (-> -x (p x y»»»
in t.:tof,ia
let y - anon2

assert (object annn2)
assert (p :monl anon2)
prove (some (-> -x (p x anon2»)
put (rreve (some {-> -x (p x anon2»» in utopia
prove (p ? anon2)

We can distinquish saveral different uses for exten8ion
worlds I

1. ~ Directed Invocation

The extension wnrld machinery provides a very powerful
invocati":'l'. and parameter paasing mechanism for procedures.
The idea is that to invoke II. procedure, first grow an
exten8ion world, then do a world dir.cted invocRtion on the
extension world. Thi8 mechanism generalize8 the previous
pattern directed invocation of PLANNER-67 several ways.
Pattern directed invocation is a special case in which there
is just une a •• ertion in the wi.h world. World Directed
Invocation represents a formalization of the useful problem
6o~ving technique known a8 ·wi.hful thinkin9'w which is
invocation on the basis of a fragment of a micro-world. Terry
t1inogl:'ad use. a special case of world-directed invocation
using restriction lists in his the.is ver.ion of the blocks
world. Suppose that we want to find a bridge with a red top
which is .upported Ly its left-leg and it. right-leg both of
which are 0: the same color. In order to accomplish this we
can call upon a genie with our wish a. it. me •• aqe. The genie
use. vhatever domain dependent knowledge it ha. to try to
realize the wish.

(realize
(utopia

("pac.
(color -top red)
(supported-by -top -left-leg)
(supported-by -top -right-leg)
(left-of -left-leg -right-leq)
(color -right-leg -color-of-leg8)
(color -left-leg -color-of-leg.»»

2. Logical Hypotheticals

For exa.ple to prove that (implie. p q) we could define
the fo11o"ill9_

[iapU •• <-
(-> [-the-.ntecedent -tb.-con.equent)

(c ••••
{(-> (tanteced.nt)

the-antecedent)
(-> (tconsequ.nt)

the-consequ.nt)
(-> (tprove'

, Wto prove .00.thiDfJ of the fona (iaplie.

-126-

anteceuent consequent)"
(extend-''1orld

(afilFl:t
the-anteceutlnt

PLMINER

(,then (prove th~~-cQ!'lsequent»»)
(-> (tdetach)

,"to 1etach a formula from (implies the­
anteceLent the-consequent) it must match
the anteceuent"

(-> thc-ante~e~ent
the-consequent))

(-> (hssert)
(assert

(>-> (assert tn~-antecedent)
(assert the-consequent»»

(.. > (#~isprove)
(extend-world

(assert t~le-.:mteccdent
(,then (disprove the-con3cq~lent»»)

,there is no (tdeny) clause because Ben Kuipers
,found a bug in the one we proposed and we
,couldn't find a substitute that. carried conviction

}»]

By the Normalization Theorem for intuitionistic logic the
ailove c!efinit:.on of implies is sufficient to mechanize logical
~plication. The rules of natural deduction are a special
case of our rules for extension worlds and our procedural
definition of the logical connectives.

3. Alternative llorlds

(let
{[hell - (after-world-war-III wcrld-1973)]}

(compare-and-contrast world-l973 hell»

4. Perceptual ViewpOints

Perceptual Viewpoints can be mer'hanized as extension worlds.
For example suppose rattle-trap is the name of a ,.,..orld which
describes my car. T~en ~front rattle-trap) could be a world
'~hich describes my car from the front and (left rattle-trap)
can be the deccription from the left Bide. We can a180
consider a future historian's view of the present by (view­
from-1984 world-of-1972). Minsky [1973] considers these
possiuilitea from a somewhat different point of view.

N. GENERAL PRINCIPLES

The following general principles hold for the use of
extension worlds:

-127-

PLANNER

Each indopundent fact should be a separa>:e assertion.

For example to record that -the banana banI is under the table
tabl- we \~ould atlsert:

(banana banI)
(tab:'..o tabl)
(under banI tabl)

instead of conglOll'leratir.g [McDermott 1973) thenl into one
assertion.

(at
(the banI (is banI banana»
(place

(the tab 1 (1s tabl tAble»
under))

A person knowing a statement can be analyzed into the person
believing the statement and the stateaent being true. So we
might make the following definition of knowing.

[know <-
(-> [-person -statement]

(and
(believeR person .tatemp.:lt)
(true .tat~~nt)l)]

Thl'. the statement [Moore 1973) ·John knows B:ll'e. phone
n!.uni.;cr- can be repr'=!H'.l/ltdd by thf'! assertion:

(kuo\"s John (phone-number Bill pn0005»
where pn0005 is a new name and (phone-number Hill pnOOOS) is
intended to mean tilat the phone number of Bill is pnOOOS. The
assertion can be expanded as follow.,

(balievp.s John (phone-number Bill pn0005»
(true (phone-number Bill pnOOOS»

However, the expanliion i. optional since the two assertions
are !!2! independent. of the origi!'al assertion.

·Whatever. ~ is 10'.id e:-.ough to tell me is
worth ... rrit!:ii"down,· .aid the Tortoi.e. ·So
e~ter 1£ In your-EOok, plea.e.-

Lewi!! Carroll

Each assertion should have jus>:~fications [derivations)
whlcl. ar~ t..l~o assertions and which thuretore •••

Extraneou. factors SUCh •• t~e and cau.ality should not
be conglomerated [Mc~ermott Iq73] into the exten.ion world---­
mechaniBJll. ract. about time alll.1 causality should alan he
.$parate a •• prtions. In this way w~ CAn deal ~ore naturally
~nd unitor.ly with qu~Ntion. inYOlving .aEe than one tiae.
Fer exa.ple we can answer the qu •• tion ·How many tiae. ·Aere
there at IIOSt two cannibal. in the boat while the lRi.sionarie.
and cannibals were cro •• ing the river?- Al.o we =an check the
eonsisceney of two different narrative. of overlapping event.
such as might be g~nerated by bft) people who attended the
party. Retrieval from data ba ••• actors take. fact. about
time and cau.ality into account in the retrieval. ThuS we
.till effecUvely avoid moat of the frue proble:n of Kcc&rthy.
The ability to do thh is enhanced by the way wo define data
base. a. actor ••

-128-

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

12.

13.

14.

15.

AUTOMATIC PROGRAMMING

PUBLICATIONS

Bishop, Peter and Carl Hewitt, "Planner Reference Manual
for the MULTICS Implementation," Version 1, Planner Techni­
cal Report No.2, September 28, 1972.

Dertouzoa, M. L., M. Athans, R. N. Spann, S. Mason, S~8tems,
Networks and Computation: Basic Concepts, (McGraw-HI 1,
U72). - -

Dertouzos, M. L., "Time Bounds on Space Computations," IEEE
Transactions on Computers, Vol. C-22, No.1, January 19~
pp. 12-17. -

Fateman, Richard J., "Solution to Problem Number 2,"
(MACSYMA), ACM SIGSAM Bulletin, Bulletin No. 24, October
1972, pp. 12-13.

Fateman, Richard J., "Rationally Simplifying Non-rational
Expressions," ACM SIGSAM Bulletin, BulLetin No. 23, July
1972, pp. 8-9.

Fateman, Richard J., Reply to an Editorial (concerning LISP),
ACM SIGSAM Bulletin, Bulletin No. 25, March 1973.

Ginzberg, M. J., "Status of the Simulator in Proto system I,·
AUtomatic programming Group Internal Memo No.3, July 1972.

Ginzberg, M. J., "Translation of Detailed System Stmulation
Language (OSSL) to Data Set Language (OSL) in Protosystem I,·
Automatic programming Group Internal Memo No.5, September
12, 1972.

Hewitt, Carl, Description and Theoretical Anal,SiS (Using
Schemata) of PftiHHER: A Lamage for ProvInq heorems and
Manlpula tiiii MOdeis in !: RO t, AI ~ 258. -

Hewitt, Carl, Models of Procedure an4 the Teaching of Proce-
~, in: Some Current vIews on Iiii'gu-aqe. -

Hewitt, Carl, et al., A Universal Modular ACTOR Formali ..
for ArtificiallnteIliience, PLANNER TecfiftICirReport RO. 3,
5iOembir 1972 (RevIsea March 1973 and June 1973).

Hewitt, Carl, et al., Actor Induction and Meta-Evaluation,
Journal of theACA'IGft:JJrSymposlWll oilJrIiiCTples of Pro­
qr..-ning Lanquaqu, Boston, Mass., October 1973.

Jes~el, G. P., "A Theory of Computer-Aided Network Analysis,"
August 1972.

MACSYMA Primer - Introductor~ Section, PEoject MAC, M.I.T.,
August 19 72 •

MACSYMA Primer - Section 2: Tr igonoMtric Functions, Proj­
ect MAC, M.t.T., August 1§'72.

-129-

AUTOMATIC PROGRAMMING

16.

11.

18.

19.

20.

21.

22.

23.

2e.

25.

26.

21.

PUBLICATIONS continued

MACSYMA Reference Manual, Ver.ion Four, Project MAC, M.I.T.,
AprIl 1973.

MACSYMA Reference Manual, Ver.ion Five, Project MAC, M.I.T.,
June 1913.

Mark, Wo, -Handling Goal-Structured Model.,~ Automatic Pro­
gramming Group Internal Memo No.1, November 21, 1972.

Martin, W. A., Interactive oe.i,n in Protosy.tam I, Auto­
matic Programming Group Interna MiiO No. 4, Auquat 21,
1972.

Martin, W. A. and lCrumland, R., ~ Language for oe.cribin,
Model. of the WOrld, Automatic Programming Group Interna
~:-6-;-OCto6ir 17, 1972.

Martin, W. A., ICrWlland, R. and Sunquroff, A., More MAPL:
Specification. and Badc Structure., Automatic Proqriiirng
GrOUp Internal iI_c,"'10":--8, february 7, 1973.

Martin, W. A., Tran.lation of Inlli.h into MAPL ~
Winoqrad'. Syntax, state fran.It on RetwOrlti;""in~ntic
C •• ec:ruaar :Xu£O.a""TrC"ProqriimOng Group Internal ""MiiiO
NO:-"'"11, AprIl 17, 1973.

Morgen.tern, M., -Auto_ting t .. De.ign and Optillli.ation
of Inforaation Proce •• ing Sy.t ... ,- Automatic Proqr~ng
Group Internal Memo No. 10, February 16, 1973.

Mose., Joel, -Toward a Gan.ral Theory of Special Function.,·
CO_",-"lication. of t .. ACM, Vol. 15, No.7, July 1972,
pp. 550-554. - - -

Niamir, B., -Interactive Optt.i.ation of Inforaation Pro­
ce.dng Sy.t_. Repre .. nted in Data Set Lanquage, Auto_tic
Proqruaing Group Internal ~ No.9, February 1973.

PIe •• , Vera, -Power Moment Identitie. on Weight Di.tribu­
tion in Error Correcting Code.,· (in) Blake, Ian (ed.),
AlfebraiC Coding Thee?, HiatOry and Deve1opeent, (Dowdan-
Au chlnaon-IO •• , 1'73 • ----

Stinger, J. S., -Bffective Ca.puting Machine. U.ing Inexact
Sub.tructure.,- July 1972.

-130-

OTHER RESEARCH

Academic Staff

Prof. V. Briabrin (visiting)

Prof. E. Fredkin

Prof. J. J. McCarthy (visiting)

Prof. M. Rabin (visiting)

G. A. Briabrin

P. M. Gunkel

F. Manning

D. J. Morgan

A. Endo

DSR Staff

Graduate Student

Undergraduate Students

Guest

-131-

M. I. Levin

M. Pivar

R. E. Sacks

M. J. Douglas

OTHER RESEARCH

Durin9 the period frore October, 1972 till April, 1973
Victor sriabrin, a Visting Professor from Moscow, USSR
was working at the Project MAC. His research was performed
on the basis of the scientific exchL~ge program between the
National Academy of Sciences of the U.S.A. and the Academy
of Sciences of the USSR. It included studying PLANNER,
CONNIVER and related programming systems, with the purpose
to make conclusions about the important features of the
high-level progr.mming languages used for the Artificial
Intelligence and other advanced research in the computer
science.

Part of his job was in establishing close contacts
with the group involved in PLANNER implementation, in view
of the parallel design of the similar programming system on
the soviet computer in Moscow.

Intensive use of LISP on POP-l~ was done in ol~~r to
compare this programming system with the appropriate j,ISP
implementation on the BESM-6 computer in Moscow. A
possibility of transfering POP-LISP programs onto the
SESM-6 was considered and the necessary adjustment of the
BESM-LISP system has been outlined.

Besides studying CONNIVER, PLANNER and LISP, V.Briabrin
participated in the series of Automatic Programming Group
seminars conducted by Prof. W.Martin. The purpose was to
study different programming techniques used for the general
design and specific applications of the Aut0&3ti~ Program­
ming Systems. Under the influence of the ideas which were
discussed in the Automatic Programming seminars, V.Briabrin
developed a model of an abstract research institute and
described it in his paper [1). An attempt at simulating
a simple soeiological strueture has shown what are the
basic relation types essential for creating a model and
what are the best ways of knowledge representation in this
specific domain.

Some aspects of model implementation were also
considered, including construction of the general fr ... ,
filling it with the specific information and applying the
request statements.

Another paper [2), written in Russian, was prepare4 by
V.Briabrin for publishing in the Soviet Union. This paper
contains the general survey of the Artificial Intelligence
methods and their mixture with the syst... progr...tng
technology in the field of creating advanced Autoaatic
Programadng Systems.

Referenees.
l.An Abstract Model of Re.earch Institute, Simple Auta.atic

Progr....u.ng Approach, Project MAC Memo, June 1973.
2.Artificial Intelligence and Automatic Programming (Russian)

Computing Center, Acada.y of Science. of the U.S.S.R.
(to be published).

-132-

* TR-l

* TR-2

TR-3

* TR-4

PROJECT MAC PUBLICATIONS

TECHNICAL REPORTS

Bobrow, Daniel G.
Natural Language Input for a Computer

Problem Solving System, Ph.D. Thesis,
Math. Dept.

September 1964

Raphael, Bertram
SIR: A Computer Program for Semantic

Information Retrieval, Ph.D. Thesis,
Math. Dept.

June 1964

Corbato, Fernando J.
System Requirements for Multiple-Access,

Time-Shared Computers
May 1964

Ross, Douglas T., and Clarence G. Feldman

Verbal and Graphical Language for the
AED System: A Progress Report

AD 604-730

AD 608-499

AD 608-501

May 1964 AD 604-678

TR-6

TR-7

TR-8

8iggs, John M., and Robert D. Logcher
STRESS: A Problem-Oriented LAnguage

for Structural Engineering
May 1964

weizenbaum, Joseph
OPL-l: An Open Ended Programming

system within CTSS
April 1964

Greenberger, Martin
The OPS-l Manual
May 1964

* TR-ll Dennis, Jack B.
Program Structure in a Multi-Access

Computer
May 1964

TR-12 Fano, Robert M.
The MAC System: A Progress Report
October 1964

* TR-13 Greenberger, Martin
A New Methodology for Computer Simulation

AD 604-679

AD 604-680

AD 604-681

AD 608-500

AD 609-296

October 1964 AD 609-288

TR-14 Roos, Daniel
Use of CTSS i~ a Teaching Environment
November 1964 AD 661-807

-133-

PUBLICATIONS

TR-l6 Saltzer, Jerome H.
CTSS Technical Notes
March 1965

TR-l7 Samuel, Arthur L.
Time-Sharing on a Multiconsole Computer March 1965

* TR-l8 Scherr, Allan L.
An Analysis of Time-Shared Computer

Systems, Ph.D. Theais, EE Dept.
June 1965

TR-19 Russo, Francis J.
A Heuristic Approach to Alternate

Routing in a Job Shop, S.B. , S.M.
rheaia, Sloan School

June 1965

TR-20 wantman, Mayer E.
CALCULAID: An On-Line System for

Algebraic Computation and Analysia,
S.M. Thesis, Sloan School

September 1965

* TR-21 Denning, Peter J.
Queueing Mod.ls for File Meaory Operation,

S.M. Thesis, IE Dept.

AD 612-702

AD 462-158

AD 470-715

AD 474-018

AD 474-019

October 1965 AD 624-943
* TR-22 Greenberger, Martin

The Priority Problem
November 1965

* TR-23 Dennis, Jack B., and Earl C. Van Horn Progr.-ming Semantics for Multi­
progr d CODputations

December 1965

• TR-24 Kaplow, Roy, Stephen Strong and
John Brackett

MAP: A System for on-Line Mat~tical Analyds
January 1966

TR-25 Stratton, William D.
Investigation of an Analog Technique

to Deer.... P.n-Tracking Tt.e in
Comput.r Display., S.M. Th •• is,
D Dept. .

March 1966

TR-26 Cheek, Thomas B.
Design of a Law-Cost Character

Generator for Re.ot. Ca.puter Displays, S • M. Thes is, BE Dept.

AD 625-728

AD 627-537

AD 476-t43

AD 631-396

March 1966 AD 631-269

-134-

TR-27 Edwards, Daniel J.
OCAS - On-Line Cryptanalytic Aid

System, S.M. Thesis, EE Dept.
May 1966

TR-28 Smith, Arthur A.
Input/Output in Time-Shared, Segmented,

Multiprocessor Systems, S.M. Thesis,
EE Dept.

June 1966

TR-29 Ivie, Evan L.
Search Procedures Based on Measures

or Relatedness between Documents,
Ph.D. Thesis, EE Dept.

June 1966

TR-30 Saltzer, Jerome H.
Traffic Control in a Multiplexed

Computer System, Sc.D. Thesis,
EE Dept.

July 1966

TR-3l Smith, Donald L.
Models and Data Structures for Digital

Logic Simulation, S.M. Thesis,
EE Dept.

August 1966

* TR-32 Teitelman, Warren
PILOT: A Step toward Man-Computer

Symbiosis, Ph.D. Thesis, Math. Dept.
September 1966

* TR-33 Norton, Lewis M.
ADEPT - A Heuristic Program for

Proving Theorems of Group Theory,
Ph.D. Thesis, Math. Dept.

Octobe r 19 6 6

TR-34 Van Horn, Earl C., Jr.
Computer Design for Asynchronously

Reproducible Multiprocessing,
Ph.D. Thesis, EE Dept.

November 1966

* TR-35 Fenichel, Robert R.
An On-Line System for Algebraic

Manipulation, Ph.D. Thesis,
Appl. Math. (Harvard)

December 1966

* TR-36 Martin, William A.
Symbolic Mathematical Laboratory,

Ph.D. Thesis, EE Dept.
January 1967

-135-

PUBLICATIONS

AD 633-678

AD 637-215

AD 636-275

AD 635-966

AD 637-192

AD 638-446

AD 645-660

AD 650-'07

AD 657-282

AD 657-283

PUBLICATIONS

* TR-37 Guzman-Arenas, Adolfo
Some Aspects of Pattern Recognition

by Computer, S.M. Thesis, EE Dept.
February 1967

TR-38 Rosenberg, Ronald C., Danie~ W. Kennedy
and Roger A. Humphrey

A Low-Cost OUtput Terminal for
Time-Shared Computers

March 1967

* TR-39 Forte, Allen
Syntax-Based Analytic Reading of

Musical Scores
April 1967

TR-40 Miller, James R.
On-Line Analysis for Social Scientists
May 1967

TR-4l Coons, Steven A.
Surfaces for Computer-Aided Design

of Space Forms
June 1967

TR-42 Liu, Chung L., Gabriel D. Chang
and Richard E. Marks

eesign and Implementation of a
Table-Driven Compiler System

July 1967

TR-43 Wilde, Daniel U.
Proqram Analysis by Digital computer,

Ph.D. Thesis, IE Dept.
Auqust 1967

TR-44 Gorry, G. Anthony
A System for Coaputer-Aided Diaqnosis,

Ph.D. Thesis Sloan School
Septaber 1967

TR-45 Leal-cantu, Nestor
On the Simulation of Dynamic Syst ...

wi th Lumped Parameters and TiJIe
Delays, S.M. The.i., ME Dept.

October 1967

TR-46 Alsop, Joseph W.
A Canonic Translator, S.B. The.is,

D Dept.
NovUlber 1967

* TR-47 Mos.s, Joel
Sy.bolic Inteqration, Ph.D. The.i.,

Math. Dept.
Dec r 1967

-136-

AD 656-041

AD 662-027

AD 661-806

AD 668-009

AD 663-504

AD 668-960

AD 662-224

AD 662-665

AD 663-504

AD 663-502

AD 612-6"

TR-48 30nes, Malcolm M.
Incremental Simulation on a Time­

Sharad Computer, Ph.D. Thesis,
Sloan School

3anuary ~968

TR-49 Luconi, Fred L.
Asynchronous Computational Structures,

Ph.D. Thesis, EE Dept.
February 1968

* TR-SO Denning, Peter ~.
Resource Alloca~ion in Multiprocess

Computer Systems, Ph.D. Thesis,
EE Dept.

May 1968

* TR-Sl Charniak, Eugene
CARPS, A Program which Solves Calculus

WOrd Problems, S.M. Thesis, EE Dept.
3uly 1968

TR-S2 Deitel, Harvey M.
Absentee Computations in a Multiple­

Access Computer System, S.M. Thesis,
EE Dept.

August 1968

• TR-53 Slutz, Donald R.
The Flow Graph Schemata Model of

Parallel Computation, Ph.D. Thesis,
EE Dept.

September 1968

TR-S4 Grochow, 3errold M.
The Graphic Display as an Aid in the

Monitoring of a Time-Shared Computer
System, S.M. Thesis, EE De:)t.

PUBLICATIONS

AD 662-225

AD 677-602

AD 675-554

AD 673-670

AD 684-738

AD 683-393

October 1968 AD 689-468

TR-SS Rappaport, Robert L.
Implementing Multi-Process Primitives

in a Multiplexed Computer System,
S.M. TheSis, EE Dept.

November 1968 AD 689-469

* TR-S6 Thornhill, D. E., R. H. Stotz, D. T. Ross
and 3. E. Ward (ESL-R-3S6)

An Integrated Hardware-Software System
for Computer Graphics in Time-Sharing

December 1968 AD 685-202

* TR-S7 Morris, 3ames H., Jr.
Lambda-Calculus Model& of Programming

Languages, Ph.D. TheSis, Sloan School
December 1968 AD 683-394

-137-

PUBLICATIONS

TR-58 Greenbaum, Howard J.
A Simulator of Multiple Interactive

Users to Drive a Time-Shared
Computer System, S.M. Thesis,
EE Dept.

January 1969

* TR-59 Guzman, Adolfo
Computer Recognition of Three­

Dimensional Objects in a Visual
Scene, Ph.D. Thesis, EE Dept.

December 1968

* TR-60 Ledgard, Henry F.
A Formal System for Defining the

Syntax and Semantics of Comp".1ter
Languages, Ph.D. Thesis, BE Dept.

April 1969

TR-61 Baecker, Ronald M.
Interactive Computer-Mediated Animation,

Ph.D. Thesis, EE Dept.
June 1969

TR-62 Tillman, Coyt C., Jr. (BSL-R-395)
EPS: An Interactive System for

Solving Elliptic Boundary-Value
Problems with Facilities for Data
Manipulation and General-Purpose
COIIlputation

June 1969

TR-63 Brackett, John W., Michael Hammer
and Daniel E. Thornhill

Ca.. Study in Interactive Graphics
Programming: A Circuit Draving
and Editing Program for Use with a
Storage-Tube Display Terminal

October 1969

* TR-64 Rodriquez, Jorge B. (ESL-R-398)
A Graph Model for Parallel Computations,

Sc.D. Thesis, EE Dept.
Sept.-ber 1969

* TR-65 Dea..er, Franklin L.
Practical Translators for LRCk)

Language., Ph. D. Thesis, D Dept.
October 1969

* TR-66 Beyer, wendell T.
Recognition of Topological Invariants

by Iterative Arrays, Ph.D. Thesi.,
Math. Dept.

October 1969

-138-

AD 686-988

AD 692-200

AD 689-305

AD 690-887

AD 692-462

AD 699-930

AD 697-759

AD 699-501

AD 699-502

* TR-67 Vanderbilt, Dean H.
Controlled Information sharing in

a Computer Utility, Ph.D. Thesis,
EE Dept.

October 1969

* TR-68 Selwyn, Lee L.
Economies of Scale in Computer Use:

Initial Tests and Implications for
the Computer Utility, Ph.D. Thesis,
Sloan School

':;"uile 1970

* TR-69 Gertz, Jeffrey L.
Hierarchical Associative Memories for

Parallel Computation, Ph.D. Thesis,
EE Dept.

June 1970

* TR-70 Fillat, Andrew l., and Leslie A. Kraning
Generalized Organization of Large

Data-Bases: A Set-Theoretic
Approach to Relations, S.B. &
S.M. Thesis, EE Dept.

June 1970

* TR-7l Fiasconaro, James G.
A Computer-Controlled Graphical

Display Processor, S.M. Thesis,
EE Dept.

June 1970

TR-72 Patil, Suhas S.
Coordination of Asynchronous F'Tents,

Sc.D. Thesis, EE Dept.
June 1970

* TR-73 Griffith, Arnold K.
Computer R~cognition of Prismatic

Solids, Ph.D. Thesis, Math. Dept.
August 1970

TR-74 Edelberg, Murray
Integral Convex Polyhedra and an

Approach to Integralization,
Ph.D. Thesis, EE Dept.

Auqust 1970

TR-75 Heba1kar, Prakash G.
Deadlock-Free Sharing of Resources

in Asynchronous Systems, Sc.D.
Thesis, EE Dept.

September 1970

* TR-76 Winston, Patrick H.
L,oarning Structural Descriptions from

Examples, Ph.D. Thesis, EE Dept.
September 1970

-139-

PUBLICATIONS

AD 699-503

AD 710-011

AD 711-091

AD 711-060

AD 710-479

AD 712-069

AD 712-070

AD 713-139

AD 713-988

PUBLICATIONS

TR-7i Haggerty, Joseph P.
Complexity Measures for Language

Recoqnition by Canonic Systems,
S.M. Thesis, BE Dept.

October 1970

TR-79 Madnick, Stuart E.
Design Strategies for File Systems,

S.M. Thesis, BE Dept. , Sloan School
october 1970

TR-79 Horn, Berthold K.
Shape from Shading: A Method for

Obtaining the Shape of a Smooth
Opaque Object from One View,
Ph.D. Thesis, BE Dept.

November 1970

TR-80 Clark, David D., Robert M. Graham,

AD 715-134

AD 714-269

AD 717-336

Jerome H. Saltzer and Michael D. Schroeder
The Classroom Information and

computing Service
January 1971 AD 717-857

TR-81 Banks, Edwin R.
Information Proce.sing and Transmission

in Cellular Automata, Ph.D. Thesis,
ME Dept.

January 1971

• TR-82 Krakauer, Lawrence J.
Computer Analysis of Visual Properties

of Curved Objects, Ph.D. Theais,
m: Dept.

May 1971

TR-83 Lewin, Do~ald E.
In-Proces. Manufacturing Quality

control, Ph.D. Thesis, Sloan School
January 1971

* TR-84 Winograd, Terry
Procedures as a Representation for

Data in a Computer Program for
UDderstanding Natural Languages,
Ph.D. Thesis, Math. Dept.

AD 717-951

AD 723-647

AD 120-098

February 1971 AD 721-399

~R-85 Ml1ler, Perry L.
Automatic Creation·of a Code Generator

fram a Machine Description, Blec. B.
DecJree, BE Dept.

May 1971 AD 724-730

TR-86 Schell, Roger R.
Dyn .. ic Reconfiguration in a Modular

COIIIputer 5ysta, Ph.D. Th.sh, BE Dept.
June 1971 AD 725-159

-140-

TR-87 Thomas, Robert H.
A Model for Process Representation

and Synthesis, Ph.D. Thesis, EE Dept.
June 1971

TR-BB Welch, Terry A.
Bounds on Information Retrieval

Efficiency in Static File Structures,
Ph.D. Thesis, EE Dept.

June 1971

TR-B9 Owens, Richard C., Jr.
Primary Access Control in Large­

Scale Time-Shared Decision
Systems, S.M. Thesis, Sloan School

July 1971

TR-90 Lester, Bruce P.
Cost Analysis of Debugging Systems,

S.B. , S.M. Thesis, EE Dept.
September 1971

* TR-9l Smoliar, Stephen w.'
A Parallel Processing Model of

Musical Structures, Ph.D. Thesis,
Math. Dept.

september 1971

TR-92 Wang, Paul S.
Evaluation of Definite Integrals

by Symbolic Manipulation, Ph.D.
Thesis, Math. Dept.

October 1971

TR-93 Greif, Irene G.
Indiction 1n Proofs about Programs,

S.M. Thesis, EE Dept.
February 1972

TR-94 Hack, Michel H. T.
Analysis of Production Schemata by

Petri Nets, S.M. Thesis, EE Dept.
Feb::-uary 1972

TR-95 Fateman, Richard J.
Essays in Algebraic Simplification,

(A revision of a Harvard Ph.D. Thesis)
April 1972

TR-96 Manning, Frank
Autonomous, Synchronous C~unters

Constructed only of J-~ Flip-Flops,
S.M. TheSiS, EE Dept.

May 1972

TR-97 Vilfan, Bostjan
The Complexity of Finite Functions,

Ph.D. Thesis, EE Dept.
March 1972

-141-

PUBLICATION~

AD 726-049

AD 725-429

AD 728-036

AD 730-521

AD 731-690

AD 732-005

AD 737-701

AD 740-320

AD 740-132

AD 744-030

AD 739-678

PUBLICATIONS

TR-98 Stockmeyer, Larry J.
Bounds on Polynomial Evaluation

Algorithms, S.M. Thesis, IE Dept.
April 1972

TR-99 Lynch, Nancy A.
Relativization of the Theory of

Computational Complexity, Ph.D.
Thesis, Math. Dept.

June 1972

TR-IOO Mandl, Robert
Further RP..ult. on Hierarchie.

of Canonic Systems, S.M. TheSis,
EE Dept.

June 1972

TR-IOl Dennis, Jack B.
On the DeSign and S~cification of

a Common Base Lan~~ge
June 1972

TR-I02 H08s1ey, Robert F.
Finite Tree Automata and w-Autamata,

S.M. Thesis, EE Dept.
September 1972

TR-I03 Sekino, Akira
Performance Evaluation of Multi­

programmed Time-Shared Coaputer
Syste .. , Ph.D. Theai., EB Dept.

september 1972

TR-I04 Sehroeder, Michael D.
Cooperation of Mutually Suspicious

Subsystems in a Computer Utility,
Ph.D. The.i., EB Dept.

September 1972

TR-I05 Sm th, Burton J.
An Analysi. of SOrting Networks,

Sc.D. Thesis, BE Dept.
October 1972

TR-I06 Rackoff, Charles W.
The Emptiness and Complementation

Problems for Auta.ata on Infinite
Trees, S.M. Thesis, EE Dept.

January 1973

TR-I07 Madnick, Stuart E.
Storage Hierarchy Systems, Ph.D.

Thesis, IE Dept.
April 1973

AD 740-328

AD 744-032

AD 744-206

AD 744-207

AD 749-367

AD 749-949

AD 750-173

AD 751-614

AD 756-248

AD 760-001

TR-109 Johnson, David S.
Near-Optimal Bin Paekinq Alqorithms
Ph.D. Thesis, Math. Dept.
June 1973

TR-110 Moll, Robert
Complexity Classes of Recursive

Functions
Ph.D. Thesis, Math. Dept.
June 1973

TR-lll Linderman, John P.
Productivity in Parallel Computation

Schemata
Ph.D. Thesis, EE Dept.
June 1973

-143-

PUBLICATIONS

PB 222-090

TECHNICAL MEMORANDA

TM-lO Jackson, James N.
Interactive Design Coordination for

the Building Industry
June 1970

* TM-ll Ward, Philip W.
Description and Flow Chart of the

PDP-7/9 Communicatio~s Package
July 1970

• TM-12 Graham, Robert M.
File Management and Related Topics

(Forme~1y Programming Linguistics
Group Memo No.6, June 12, 1970)

September 1970

* TM-13 Graham, Robert M.
use of High Level Languages for

Systems Programming
(Formerly Programming Linguistics
Group Memo No.2, November 20, 1969)

September 1970

* 'Dt-U vogt, Carla M.
Suspension of Processes in a Multi­

processing Computer System
(Based on S.M. Thesis, EE Dept.,
February 1970)

September 1970

TM-1S Zilles, Stephen N.
An Expansion of the Data Structuring

Capabilities of PAL
(Based on S.M. Thesis, EE Dept.,
June 1970)

October 1970

TM-16 Bruere-DawBon, Gerard
Pseudo-Random Sequences

(Based on S.M. Thesis, EE Dept.,
June 1970)

October 1970

TM-17 Goodman, Leonard I.
Complex1ty Mealur •• for Programming

Language., (Ba!ied on S.M. Th •• is,
EE Dept., September 1971)

September 1971

* 'Dt-18 Reprinted as TR-8S

* TM-19 Feniche1, Robert R.
A New List-Tracing Algorithm
October 1970

-144-

AD 708-400

AD 711-379

AD 712-068

AD 7ll-965

AD 713-989

AD 720-761

AD 713-852

AD 729-011

AD 714-522

TECHNICAL MEMORANDA

TM-IO Jackson, James N.
Interactive Design Coordination for

the Building Industry
June 1970

* TM-ll Ward, Philip W.
Description and Flaw Chart of the

PDP-7/9 Communications Package
July 1970

* TM-12 Graham, Robert M.
File Management and Related Topics

(Formerly Programming Linguistics
Group Memo No.6, June 12, 1970)

September 1970 .

* TM-13 Graham, Robert M.
Use of High Level Languages for

Systems Programming
(Formerly Programming Linguistics
Group Memo No.2, November 20, 1969)

S.ptelllber 1970

* TM-14 Vogt, Carla M.
Suspen.ion of Proc ••••• in a Multi­

proc •• sing Computer Sy.tem
(Ba •• d on S.M. Th.sis, BE Dept.,
February 1970)

Septemb.r 1970

TM-15 Zilles, Stephen N.
An Expansion of the Data Structuring

Capabilities of PAL
(Based on S.M. The.i., BE Dept.,
June 1970)

oetobe r 1970

TM-16 Bruere-Dawson, Gerard
Pseudo-Random Sequences

(Ba.ed on S.M. The.is, BE Dept.,
June 1970)

October 1970

TM-17 GoodIDan, Leonard I.
ea.plexity Mea.ur~. for Progr ... ing

Language., (8a .. d on S.M. Theai.,
BE Dept., September 19 71)

Septeanber 1971

* TM-18 Reprinted as TR-85

• TM-19 Fenichel, Robert R.
A NeW List-Tracing Algoritha
October 1970

-1"'-

AD 708-400

AD 711-379

AD 712-068

AD 711-965

AD 713-989

AD 720-761

AD 713-852

AD 729-011

AD 714-522

PUBLICATIONS

* TM-20 Jones, Thcm~s L.
A Computer Model of Simple Forms

of Learning, (Based on Ph.D. Thesis,
EE Dept., September 1970)

January 1971

• TM-21 Goldstein, Robert C.
The Substantive Use of Computers

for Intellectual Activities
April 1971

TM-22 Wells, Douglas M.
Transmission of Information Between

a Man-Machine Decision System and
Its Environment

April 1971

TM-23 Strnad, Alois J.
The Relational Approach to the

Management of Data Bases
April 1971

TM-24 Goldstein, Robert C., and Alois J. Strnad
The MacAIMS Data Management System

AD 720-337

AD 721-618

AD 722-837

AD 721-619

April 1971 AD 721-620

TM-25 Goldstein, Robert C.
Helping People Think
April 1971 AD 721-998

TM-26 Iazeolla, Giuseppe G.
Modeling and Decomposition of

Information Systems for Performance
Evaluation

June 1971 AD 733-965

TM-27 Bagchl, Amitava
EcOnomy of Descriptions and Minimal

Indices
January 1972

TM-28 Wong, Richard
Construction Heuristics for Geometry

and a Vector Algebra Representation
of Geometry

June 1972

TM-29 Hoasley, Robert and Charles Rackoff
The Emptiness Problem for Automata

on Infinite Trees
Spring 1972

TM-30 McCray, William A.
SIM360; A 5/360 Simulator

(Based on S.B. Thesis, ME Dept.,
May 1972)

October 1972

-145-

AD 736-960

AD 743-487

AD 747-250

AD 749-365

TM-31 Bonneau, Richard J.
A Class of Finite Computation Structure.

Supportinq the Fast Fourier Transform
March 1973

TM-32 Moll, Robert
An Operator Embeddinq Theorem for Com­

plexity Classes of Recursive Functions
May 1973

TM-33 Ferrante, Jeanne and Charles Rackoff
A Decision Procedure for the First

Order Theory of Real Addition with
Order

May 1973

TM-34 Bonneau, Richard J.
Polynomial Exponentiation: The Fast

Fourier Transform Revisited
June 1973

PUBLICATIONS

AD 757-787

AD 759-999

AD 760-000

PB 221-742

•••••••••••••••••• 4 •••••••••••••••••••••••••

TM'. 1-9 vere never i •• ued

-lU-

PUBLICATIONS

* Project MAC Progress Report I
to July 1964 AD 465-088

p['oject MAC Progress Report II
July 1964-July 1965 AD 629-494

* Project MAC Progress Report III
July 1965-.Tuly 1966 AD 648-346

Project MAC Progr' ss Report IV
July 1966-':' lly 1967 AD 681-342

Project MAC Proqress Report V
July 1967-,Tuly 1968 AD 687-770

Project MAC Progress Report VI
July 1968-July 1969 AD 705-434

Project MAC Proqress Report VII
July 1969-July 1970 AD 732-767

project MAC Progress Report VIn
July 1970-July 1971 AD 735-148

* Project MAC Proqress Report IX
July 1971-July 1972 AD 756-689

**

Copies of all MAC reports listed in Publications may be
secured for the National Technical Information Service,
Operations Division, Springfield, Virginia, 22151. Prices
vary. The AD number must te supplied with the request.

*Out of print, may be obtained from NTIS Clee above).

-147-

