Thoughts on Early days of Multics and Performance

Thoughts about the early days of Multics with rusty analysis on the
subject of Performance Improvement

John W Gintell - Multics (1967-1986)

At the Multics reunion on June 9, 2012 we had some conversations about the early days and that
got me thinking about the late 1967 - mid 1969 period of development.

When Multics first started working, it was extremely slow and we had to do a lot of rework to
practically everything to get it to the point where it could actually be used by users. We got a big
kick in the pants in 1968 when ARPA was considering withdrawing funding which would have
terminated the project. At some point during the negotiations we got a do-or-die goal of fall of
1969 for the debut of a real service at MIT. To me this period of time was one of the best. We were
severely challenged to design and implement many significant changes, most of which I would call
simplifications that would achieve good results but would not have us have to give up any goals or
important design concepts. It was fun doing this. This effort helped knit together the people in the
three organizations working on this project.

In addition to doing things based on healthy conceptual analysis, gut feelings, and more-learned
opinions we built a bunch of performance measurement tools that would allow us to collect data
about what was going on. We built two special tools (one of my projects). The first was to collect
data for page, segment, and linkage fault processing times. The second was to use the alarm clock
to sample what segment was currently being executed in order to understand where the
bottlenecks were. A more comprehensive paper about these and other tools and methodologies
was written by Jerry Saltzer and me and presented at an Operating Systems Symposium in 1969,
and later published in Communications of the ACM and the Peter Freeman book Software Systems
Principles. This paper is available here: http://www.multicians.org/InstrumentationPaper.html

[looked through my archives the other day and found a document (Charlie Clingen to Andre
Bensoussan, Dave Vinograd and me - Dave and [were the designers/implementers of these tools)
that had a table of page, segment, and linkage faults collected in April 1968. (I scanned it.) What is
most fascinating to me was the Page Fault data. Out of 6,809 page faults with an average of 88
ms/pf there was one page fault that took 2.2954 seconds!

In this same run the average segment fault time was 117.7 ms and there were 3 that averaged 2.9
seconds. The average linkage fault time was 115 ms and there were 6 that averaged 1215 ms.
These times exclude the time in lower level faults. There were 6809 page faults, 2487 segment
faults and 912 linkage faults. I am not sure what was actually occurring during this experiment - it
may have been booting up to console level. In another experiment that was definitely initialization
we had 4,014 page faults for an average of 86.1 ms/pf and there were 2 with an average of 6.5
seconds!

John W Gintell 1 Jul/Dec 2012, May 2014

Thoughts on Early days of Multics and Performance

= B N y
Yo\t FECEL S\ 1IN & \)C,u\ Toeens == Uailh Ung
- L ! ~
W sax oty VA v LA e 2
-
“= R vy *
| Oy Ly b N
e
[
z \ ~ sy 3 ! 5
Tambir 0% '.'..~'z».\- e Fros.. i
y AT “\ P
‘:t.. sl A.fh‘u'.l.uw,;.,.‘._,‘l»,\'- -{ Lok’ r: /
— = e A L e v
= Wwoies 2.4
——a —hts -
%50 S sERT TED 2%l
=TT IsL 0%} To0O $4.D
-1} LG 7 89 T
2 b - - [y B 'L
1 i L e b
2 11693 504 216:5
g e —_ Py i ol <
| Y s F92 658 | _)D&-b
= 2rieco=049 AR
|07 751353291 7040
24 30121 0SSt AT,
) -) P ¢ \
| iz S !9cH 22954
=00 o lmmmlo g
£809 B9% (835297
f.)‘r/.\f».(/‘. SaeTngy = - { ms/'g“\'

The Multics designers felt that there were lots of good reasons for not all segments to have the
same page size. The 645 supported two page sizes: 64 words and 1024 words, but we rarely used
the 64 word page size. The designers went further with the concept of a hyperpage that would be a
set of pages that would be brought in at once. Different segments could have different hyperpage
sizes (I think 1, 2, and 4 pages, but maybe more) with the pages to be located in consecutive
locations in memory. To my recollection what we thought was the cause of that 2 second page-
fault was that it was for a 4-page hyperpage that required finding 4 adjacent pages to evict
following the least-recently-used algorithm for selecting pages and depending on the history that
might require moving lots of pages around. Addressing this by no longer implementing hyperpages
(and another similar concept called page batching that would bring in adjacent pages at a page
fault to anticipate future usage) was an easy fix to yield considerable improvement.

In general, one of things that we did with great payoff was to address the many variable sized items
that required space allocation and moving things around. For example segments could be
anywhere between 1 page and 256 pages long. Filemaps for storing the disk addresses of each page
were variable sized depending on the segment size. There was a 10 word header for each segment
and since each page required a half word to store the disk address a 1K segment would have an 11
word filemap; a 256K segment would have a 138 word filemap. When a segment grew, its filemap
would have to grow and be relocated within the directory segment. An important decision was to
restrict maximum segment size to be 64K and make all filemaps be 42 words. There was an

John W Gintell 2 Jul/Dec 2012, May 2014

Thoughts on Early days of Multics and Performance

additional space allocation problem in directory management for in addition to segments there
were links and the link value could be variable sized. We decided that we would make directory
entry for a link the same size as that for a segment and thus there were 42 words available to store
the link value. This is where the 168-character pathname limit came from.

Continuing along these lines, PL1 supported fixed length and variable length character strings.
There was no EIS and thus string operations took multiple instructions; variable length ones took
more because of the need to interpret the length field and the need for dynamic space allocation for
the storage of such strings. We decided to use only fixed length character strings. This change and
the above change for filemap/link storage is why there are those char (168) declarations.

Another strategy was to deal with ring crossing. The user was in ring 32, the linker and segment
name management was in ring 1, and the rest of the supervisor was in ring 0. Ring crossing was
expensive and partly because the hardware didn’t support rings there needed to be a copy of the
descriptor segment for each ring to reflect different access rights and thus any change/addition to
a descriptor segment entry had to be made in three places. This was the motivation for moving the
linker (and segment name management) into ring 0 (one of my projects) to avoid extra ring
crossing on linking as well as extra descriptor segment maintenance. We didn’t reintroduce ring 1
(for other purposes) until much later when we had hardware support for rings and many other
performance improvements had been made. The hardware supported only 8 rings - 9 bits of
storage instead of 21 to express ring numbers.

For several years we had no binder and thus each separately compiled program occupied its own
segment - actually two since the linkage section was in a separate segment since it had to be
writable. In a December 1967 printout [note that 667(8) or 439 segment numbers were used for a
supervisor process - not counting initialization segments of which there were 222(8) or 146. We
created a combined linkage segment which halved the number of segments and then developed the
binder which radically reduced both the number of linkage faults and number of segment numbers.

This discussion reminded me of this acronym in jest for Multics:
Many Unusually Large Tables In Core Simultaneously

The alarm clock driven segment usage metering allowed us to identify and repair many bottlenecks
because we could determine how much spent in each module. This was especially easy to interpret
before we had the binder since each program was in a separate segment.

Very significantly we made a number of modifications to the PL1 compiler so that commonly used
constructs would generate good code. We carefully defined a subset of the language called REPL
(restricted EPL) that included only these language constructs and then modified most of the
system to only use REPL. We built two tools to be used at software submission time -
source_submission_test, and object_submission_test that looked for known-to-be-bad things so as to
prevent the installation of potentially poor performing programs.

We rewrote various commands and components with simplification of function in mind. An
example of one change was Bob Daley’s writing of gedx, to replace ged, the editor of choice; some of
the qed features were removed to keep it simple and help make it fast. The epl compiler was a
memory hog so we created the epl daemon and people submitted their compilations to it so that
there would only be one going on at a time. With all these changes we never had to abandon any
John W Gintell 3 Jul/Dec 2012, May 2014

Thoughts on Early days of Multics and Performance

important design principles while achieving incredible progress.. I think this was a very significant
attribute of the project. I've seen many other projects that permanently abandoned important
principles in order to make a schedule.

[do point out that in that era almost no-one wrote system software in anything but assembly
language. Choosing PL1 made it much easier to make large changes in a small amount of time. And
optimizing the compiler to generate very good code meant that many things could get faster by
merely recompiling.

This leads me to write a few words about how the manner of people working together affects the
end result. When I first joined the project in February 1967 working for GE there was a pretty large
disconnect between the Project Mac people and the GE people even though we were in the same
building 2 floors apart. Some of the GE people would say that the MIT people had no concept of
realism in terms of schedules or practicality while the MIT people would say that GE had messed
up; the hardware was late and faulty, the contracted-for PL1 compiler was absent, and people were
willing to jettison important objectives, etc. When Charlie Clingen became CISL manager and [
became development manager we worked on this, partly by adjusting assignments so that people
from both organizations were working together and sharing offices. This made a big difference to
the working relationships. I remember once when a person from GE quit, several MIT people said
“I didn’t even know he worked for GE”. A bit later, when Bob Daley left [became overall project
manager with an office on the MIT floor. I'd say it was truly a joint MIT and GE/Honeywell project.

As Multics became a serious product after Honeywell bought the GE computer business, CISL
expanded and hired some of the MIT people. MIT continued to play a key role with some
development responsibilities and as the site where software was first installed for quite a few
years. I suspect such an arrangement of a University R&D group and a corporate product
development group working so closely is very rare and was a good model for technology transfer.

John W Gintell 4 Jul/Dec 2012, May 2014

