
MTB 543, Rev 1 Multics Technical Bulletin

·-
To: MTB Distribution

From: Noah S. Davids and Paul W. Benjamin

Date: May 14, 1982

Subject: MRDS Restructuring for MR10.1

Send comments by one of the following means:

By Multics mail (on System M):
Benjamin.Multics

By Telephone:
HVN 341-7302 or 602-249-7302

By Forum (method of choice)
Link to transaction 137 (subject restructuring mtb) in
the >udd>Demo>dbmt>mrds rst meeting.

Multics Project internal working documentation. Not to be reproduced
outside the Multics Project.

05/14/82 Page 1 MTB 543, Rev 1

Multics Technical Bulletin MTB 543, Rev i

INTRODUCTION:

The purpose of this document is to present the subsystem that
will be implemented for MR 10. 1 to allow a DBA to restructure a
MRDS database.

RESTRUCTURING CAPABILITIES:

The restructuring capabilities to be provided in MR10.1 are:
adding new relations
adding a new populated relation based

on a selection expression
adding new secondary indices to relations
deleting relations
deleting secondary indices

These capabilities were selected based on providing the most useful
capabilities given the time allowed for the task. While an earlier
version of this document proposed changing the data model, a decision
was made to use the existing structure of the data model. When
the larger task is re-visited, it is proposed that changes to the
model should take place at that time.

DBA INTERFACE:

The interface that has been chosen is that of an ssu -based
subsystem. The ssu (subsystem utility) package is a powerful
tool for subsystem design. The use of the subsystem approach
will allow the requests to have shorter names than the corresponding
commands would, without being ambiguous, as well· as reducing the
number of arguments that each request needs and allowing the per
database checks (existence and DBAness) to be done only once instead
of for each request.

CONCURRENCY:

While it would be possible to design a system that allowed all
the various levels of concurrency needed for restructuring I do
not feel that it is advisable.

INTERRUPTION and INCONSISTENCY:

Although rmdb will be an interactive subsystem, there are
operations that it performs that can potentially take long periods
of time. Adding secondary indices to a large relation would be
measured more easily in minutes than it would in milliseconds.
Because of this, the issue of interruption and release is of
greater import than in most interactive subsystems. If the user

05/14/82 Page 2 MTB 543, Rev 1

MTB 543, Rev 1 Multics Technical Bulletin

quits after 45 minutes of uncompleted work, what does one do?
Deleting the indices that had been created could well take another
45 minutes. Releasing leaves the database in an inconsistent
state. The decision was made to allow the user an option. In
the cleanup handler the user will be queried and given 2 choices.
Either the operation will be continued (as if she had typed start
rather than release) or the release will continue. In the latter
case the database is flagged as inconsistent and two things are
stored: a text string containing the reason for the inconsistency,
and an 'undo' operation. An undo operation is a an rmdb request
line that will make the database consistent. The undo operation
for the create index request is the corresponding delete index
request, for example. Subsequent attempts to open the database
will be refused (displaying the fact that the database is inconsistent
and why). Changes to various MRDS modules that open the database
or display the status of the database will be necessary. Upon
attempting to use the database in rmdb the OBA will be informed
that the database is inconsistent, that undo operation will make
it consisten once again, and does she wish to have that request
line executed on her behalf? It is stated in the Standards SON
that cleanup handlers should never print anything. We have, however,
been in touch with the developer primarily concerned with such
matters and been assured that, if approached properly, it can be
done in this situation.

05/14/82 Page 3 MTB 543, Rev 1

Multics Technical Bulletin MTB 543, Rev 1

TIME ESTIMATES:

The time estimates for implementing these restructuring
capabilities may be broken down into three parts, implementing
the subsystem, implementing the individual requests, and modifing
the ancillary MRDS code. These estimates are based on the existing
MRDS project staff and currently perceived difficulty of changing
the ancillary MRDS code.

implementing the subsystem:
design: • 5 per son week (pw)
documentation: .5 pw
test design: .5 pw
implementation

coding: 1 pw
test execution and bug fix: 1.5 pw

total: 1 per son month (pm)

implementing the restructuring commands:
design: 2 pm
documentation: 0.5 pm
test design: 1 pm
implementation:

coding: 2 pm
test execution and bug fix: 2 pm

total: 7.5 pm

modification of ancillary code:
design: 1 pw
documentation: 1 pw
test design: 1 pw
implementation

coding: 2 pw
test execution and bug fix: 1 pw

total: 1. 5 pm

05/14/82 Page 4 M TB 5 4 3 , Rev 1

,.. restructure_mrds_db

SYNTAX:

restructure mrds db {db_path}
rmdb {db_path}

FUNCTION:

restructure mrds db

This command causes the invoking process to enter the MRDS
restructuring subsystem. If the optional database argument
is given, that database is quiesced.

AR GUM EN TS:
db path

-A relative or absolute path to the database to be restructured.

NOTES:
1) This command may only be used against a version 4 or later

database.

2) This command may only be used by the (one of the) database's
DBA.

3) This command may not be used against a database that is
already open by any process. The database may be opened
(only by the process invoking this subsystem) after the
subsystem has been entered by invoking linus or mrc via the
" " request.

05/14/82 Page 5 MTB 543, Rev 1

restructure mrds db restructure_mrds_db - -

LIST OF REQUESTS 1

create·index relation name attr name
cri relation name attr name -

Makes the indicated attribute a secondary index into the
relation. This operation is not allowed on any attribute
that may already be treated like an index. An a.ttribute may
be treated like an index if it is an index or if it is the
first attribute of the relations primary key.

create relation relation name {(attr1 attr2 •••) } {-index attri
attrk ••• } {-se STR}-

crr relation name {(attr1 attr2 •••)} {-index attri attrk ••• } {-se
STR}
Creates a new relation. An unpopulated relation may be
specified by listing the attributes that will make up the
relation, each attribute must already be defined. Attributes
that are to make up the relation's primary key are followed
by an "*"· A relation may also be specified by a selection
expression. In this case the relation will take the format
of the attributes in the select clause of the expression,
again attributes followed by an "*" (in the select clause)
indicate that the attribute is part of the primary key. The
relation will be populated by those tuples selected by the
selection expression. Only one of these specifications formats
may be used. The index control argument indicates which
attributes are to be secondary indices into the ·relation.

delete index relation name attr name {-force}
dli relation name attr name {-force}

Deletes-the secondary index over the indicated attribute in
the relation. The -force control argument will cause partially
created indices (or indices that appear to be inconsistent
with the model) to be deleted without comment. The default
in such situations is to report an error and abort processing.

delete relation relation name {-force}
dlr {-force} relation name

Deletes the indicated relation from the database. The -force
control argument will cause partially a created relation (or
a relation that appear to be inconsistent with the model) to

1 The standard ssu requests, including ? , • , •• , abbrev, answer,
debug mode, do, exec com, execute, help, if, list help, ready,
ready-off, ready on,- subsystem name and subsystem version are
supplied. They rwith the exception of debug mode and the ready
requests) will be fully documented, but for the purposes of
this MTB are not documented here.

05/14/82 Page 6 MTB 543, Rev 1

~ restructure mrds db restructure mrds db

be deleted without comment. The default in such situations
is to report an error and abort processing.

free db, fdb
-Unquiesces the database.

quit, q
Unquiesces the current database
mrds_restructuring subsystem.

ready db db path
rdb db path-

and leaves the

Quiesces the indicated database and makes it available for
restructuring. Note that only one database can be restructured
at one time.

05/14/82 Page 7 MTB 543, Rev 1

