
Al‘

‘lg

/he

A

- BOOU5

TO: Distribution List
FROM: J. F. Gimpel, room 3G-123, BTL, Holmdel, N. J.

SUBJ: A Proposed Outerview of Performance Monitoring
in Multics

DATE: April 13, 1966

ABSTRACTi-I-i--._i

This document supplements an earlier document (B0039)
entitled "Software Tools for Monitoring and Tracing in
Multics", dated 2/15/66. Whereas the earlier paper dealt
with the mechanics of implementing performance monitoring
tools (an innerview) this present paper explains how these
tools might be used in practice (an outerview). Together,
they form an overview of a proposed scheme for monitoring
the performance of Multics.

A Proposed Outerview of Performance
,m_ Monitoring in Multics

by James F. Gimpel

Preface
.._.,_..________._

The Multics repository document B0039 [l] describes the
'~‘ aims and methods of a proposed Monitoring and Tracing

package (MT-package). As such, that paper represents an
innerview of performance monitoring. This present paper
is a companion to [l]. It speculates how the MT-package
might appear to the outside world and therefore represents
an outerview. Together these two papers comprise an
overview of a proposed scheme for monitoring the perform-
ance of Multics.

In some ways the general approach adopted in these papers
is novel. Just why this approach was taken at this time
and in this way is treated slightly in [l] and is ampli-
fied and expanded in the introduction to this paper.

The body of the paper is intended to be both tutorial and
precise. The first to describe what we are talking about
and the second to describe what we are not talking about.
The first aim is served by an annotated example (sectionII), the second, by an annotated syntax (section IV).
Both properties are essential if feedback is to be obtained
and comment is invited.
Whenever the subject of performance monitoring is brought
up in conversation, the question of security inevitably
comes up. The arguments that are furthered to prevent con-

”“* trolled probing into the system are quite specious as

M

Section III demonstrates. .

As is often the case, the ideas contained in this paper are
a composite of the thoughts and feelings expressed by other
workers on the project which include D. Farber, V. Vyssotsky,
C. Jones, J. C. Noll and P. Neumann of BTL and E. L. Glaser,
J. Saltzer, D. Widrig and D. Wagner of MIT.

____.__.i._--._-

*but not completely new. Traces of the same general
idea appear in [5], [6] and [7].

. -3-

Cleverness will be needed and llth hour decisions will be
made; this much is true. But the trickery can be combined
early in the game into a comprehensive set of monitoring

"“~ tools to implement later decisions. This is the general
view which is being proposed here.

II. AN EXAMPLE-__iZ._-1-__._

There is a great deal of data that could be measured and
monitored in Multics. The ready list, for example, could

AFN be copied at each process exchange in order to obtain a
display similar to the login and waiting - queue display
at project MAC. Selected contents of the core map could
be continually copied for on-line display or off-line
perusal. The i/o queues could be copied at each call to
a device interface module and either displayed or tested
for unusual properties. A histogram of the duration of
time spent within various system modules might be interesting.
Any of a large variety of statistics such as the average
hold-time of a remote console, the average job length, the
percentage of system overhead measured in time or in core
storage, the percentage of core typically kept impotent
waiting for i/o, could all prove valuable within certain
contexts. All of these examples have the common property
that they can be implemented with the tools described in
this paper. Other sorts of possibly more sophisticated
monitoring may occur to the reader now, a year from now, or
even some time after obtaining the results of other monitoring.
We would like to ensure now that such monitoring specified
in the future will be possible without major surgery to the
existing softwave.

For the purpose of illustration we choose the example of
measuring and/or displaying the extent to which a compiler,
say the Fortran compiler, is being paged.* We decide that

,_\ we would like a histogram prepared for each monitored compi-

A

lation of a Fortran program. The histogram would display the
number of times a particular page of the compiler is brought
into core versus page number.

Now it is possible for several Fortran compilations to be
proceeding nearly simultaneously in the sense that several
active processes are using Fortran. We arbitrarily stipulate

_.'-i__i_._..i
*The example would be equally valid for a PL/I compilation,

or any other compilation, or indeed any other procedure, by
a simple substitution of symbolic names. A simple modifica-
tion would allow monitoring the paging of data bases as well.
The interested reader will probably want to furnish this
example for himself.

5

Table 1

The succession of monitoring modes in the example.
/_*~_

Trigger , Monitoring Mode
T

\

None assumed

Console Request

~’“ Look for Fortran compilation
in any process

|

Call to Fortran

Stop looking for new calls to
Fortran; start looking for
page-not-in-core faults in the
process in which the call was
made. Also remain sensitive
to a return from Fortran.
Monitoring mode does not change
with a page-not—in-core fault
but some data gathering activity
can be invoked.

Return from Fortran

Stop looking for page-not-in-
core faults and start looking
for fresh calls to Fortran.
Also write data out.

’~“ Call to Fortran '

* Repeat above sequence.

30 min after original
request

~

c’\ None

7

the Fortran compiler and gives this number as an argument
when arousing File2. In this case, arousing File2 with this
argument represents an efficiency as we will see when we

‘ ‘ examine the second mode of monitoring. In general, theability to arouse a plan with furnished arguments is a fairly
powerful technique. It's implications are far from completely
understood. At the moment the syntax allows only arguments
in calls out to be parameterized; this is perhaps conservative

The process processl, which is scheduled upon return from
Fortran, is used merely to convert raw data collected during

'“* the compilation into a form more palatable for human con-
sumption.

Plan File2

File2 (see Figure 2) has three requests. The first asks
that all page-not-in-core faults be directed to a procedure
called tally. The second request asks that tally, as well
as the activity distribution routines that call tally, be
bolted to core until this plan is suspended. The third
request asks that the plan File2 be unregistered after 30
minutes.

The first line of File2 indicates parameters which are plugged
at arouse-time. At the moment, only arguments in calls out
are regarded capable of being parameterized.

We note also that the activity
perform call tally (n)

suggests that tally has an argument list of one argument. If
the three symbols '(n)" were absent, tally would be called
with a standard argument list like alpha in plan Filel.

¢-x Procedure tally is shown in Figure Q.’ It is written in PL/I
primarily for documentation rather than any other reason;
the procedure is quite machine dependent.

III. SECURITY

Inevitably, when the subject of performance monitoring comes
up, the problem of security is raised. The issues of security

,\A and reliability are important and cannot be lightly dismissed.

__..i..___._.i_._.
*There is, in fact, substantial room for upgrading the

entire scheme. For present purposes, the syntax has been
kept deliberately simple. There is such a thing as being too
ambitious.

_9__

where filename indicates the name of a file which contains
a plan and the scalar-expressions are interpreted as strings
to indicate the name of a registered plan. We have assumed

\~ throughout that there will be some standard transformation
for subroutine calls to commands as indicated in [3].

E2225

A plan has the following format

plan 2:: [PARAMETERS-line]...request...

nk PARAMETERS-line :z= PARAMETERS identifier...
Note: The identifiers which appear in a PARAMETERS-line
can appear later in the same plan only in a type-2 activity
as indicated below in its syntactic definition.

request ::= EA-request IFIX-request

Note: EA-request is short for EVENT ACTIVITY request.

EA-request 1:: {{UPON event}... [FOR process-class].

{PERFORM [§%§]a¢tivity}...

Note: The semantic interpretation of the EA-request syntax
is probably self-evident.

event ::= CALL-RETURN external-symbol]

FAULT integer]

INTERRUPT integer]

REFERENCE external-symbol]
1%

AROUSE-TIME + A absolute-time]
REGISTER-TIME +

OPEN

CLOSE
filename

The interpretation of these six kinds of events is further$5 _

described in [1].

<

,1.»

,.q0~.

L

upon call-return fortran
for all processes

perform call alpha

~ upon registertime + 30 min.

perform(2) restart processl
\

perform call unregister ("file 1)

Figure 1. The contents of file filel.

I

0

we

alpha: procedure (parameter - list);
if (this is a call)then go to alphal;

if (this is a return) then go to alpha2;

/"K alphal: call suspend ("filel"); V

169'».

.4-Q4

/*find somehow the segment number associated with

Fortran and stuff it into n */
call arouse ("file2", n);

return;

alpha2: call suspend ("file2");
call arouse ("filel");
return;

end alpha;

Figure 3. Procedure alpha written in "pidgeon" PL/I.

Q

Q

/‘K

»—~

AQM

/5*»

[1]-

[3]-

[4].

[5]-

[6].

[7]-

REFERENCES

J. F. Gimpel, "Software tools for monitoring and
tracing in Multics" Multics Repository Document BOO39;
Feb. 15, 1966.

[2]. "IBM Operating System 360 PL/I: Language Specifications
IBM Systems Reference Library, File No. S360-29, Form
C28-6571-2, Jan. 1966; p. 11.

D. Eastwood, G. Schroeder, R. Sobecki, "Overview:
Use of Commands in Multicsn, MSPM, BX.0.00; Jan. 27, 1966

D. Widrig, "System Metering", Multics Repository
Document M0062; March 17, 1966

W. S. Brown, "Debugging and MULEICS", Multics Repository
Document B0021; Nov. 9, 1965, p. 4 (last paragraph).

D. B. Wagner, "Debugging aids for the Multics System",
Multics Repository Document M0052; Nov. 9, 1965, p. 2
(first paragraph).

J Ridgeway, "Trace and dump for EPL procedure debug-
ging in the 6&5 simulator environment , MSPM, BE.12.01;
April 8, 1966

Q

Q

/‘K

»—~

AQM

/5*»

[1]-

[3]-

[4].

[5]-

[6].

[7]-

REFERENCES

J. F. Gimpel, "Software tools for monitoring and
tracing in Multics" Multics Repository Document BOO39;
Feb. 15, 1966.

[2]. "IBM Operating System 360 PL/I: Language Specifications
IBM Systems Reference Library, File No. S360-29, Form
C28-6571-2, Jan. 1966; p. 11.

D. Eastwood, G. Schroeder, R. Sobecki, "Overview:
Use of Commands in Multicsn, MSPM, BX.0.00; Jan. 27, 1966

D. Widrig, "System Metering", Multics Repository
Document M0062; March 17, 1966

W. S. Brown, "Debugging and MULEICS", Multics Repository
Document B0021; Nov. 9, 1965, p. 4 (last paragraph).

D. B. Wagner, "Debugging aids for the Multics System",
Multics Repository Document M0052; Nov. 9, 1965, p. 2
(first paragraph).

J Ridgeway, "Trace and dump for EPL procedure debug-
ging in the 6&5 simulator environment , MSPM, BE.12.01;
April 8, 1966

