
2/

}

/\

/\

MULTICS OPERATING STAFF NOTE MOSN 61»-3-2
Revision 0

To: Distribution

From: Robert S. Coren

Subject: Maintenance of the I/O Daemon and Associated Data Bases

Date: 01/25/7h

This document describes the procedures necessary to enable
the I/O Daemon to run normally; in particular, it will describe
the tools available for creating and preparing the data bases
required by the I/O Daemon. Some familiarity with MOSN 6.h.3,
"Operation of the I/O Daemon," is assumed.

All relevant I/O Daemon data bases must reside in a single
directory. For regular service operation, this directory is
>daemon_dir_dir>io_daemon_dir. For testing purposes, the daemon
may run using data bases in some other directory (see Section IV,
"Operating the I/O Daemon in 'Test' Mode").

I. BRIEF DESCRIPTION OF DATA BASES

A. Permanent Data Bases

These data bases stay around between I/O Daemon sessions,
and must exist in their correct form in order for the I/O Daemon
to run properly.

io_daemon_parms

This is an ascii segment suitable for on-line editing. It
contains all the basic parameter information for the I/O Daemon
subsystem; it is the control file on which all other I/O Daemon
data bases depend. its contents and syntax are described in
Section II of this document.

User request queues

i These are message segments in which user output requests are
placed by the dprint and dpunch commands for processing by the
I/O Daemon. They are described in Section III of this document,
where the create_daem0n_queues command is discussed.

1

MULTICS OPERATING STAFF NOTE MOSN 6.h.3.2
Revision 0

daemon_search_rules_

This is an ascii segment suitable for interpretation by the
Darse_search_rules_ subroutine (which is described in the Multics
Systems Programmer's Supplement to the MPM). It contains the
search rules to be used by the l/0 Daemon; these rules must
include the library >tools.

B. Temporary data bases

The I/O Daemon uses a variety of temporary data bases which
are reinitialized or re-created whenever the I/O Daemon
Coordinator process is logged in. The information in them
reflects the current state of the I/O Daemon; the initial values
are mostly derived directly or indirectly from io_daemon_parms.

ll. THE "io_daemon_parms" FILE

The "io_daemon_parms" segment is an ascii file with a syntax
suitable for use with parse_file_. it should be input and
modified by means of a text editor. The segment consists of
statements of the form:

keyword: value;

where keyword is one of the keywords described below, and value
is a character string consisting of letters, digits, or any of
the characters, ">", "_", and "$“. (The special syntax for
subkeywords to the "remote" keyword is described later.)
Comments may be included in the file for easier reading; any
characters appearing between the strings "/*" and "*/" are
considered comments and ignored by the procedures that interpret
the file. Blanks and tabs not embedded in keywords or values are
likewise ignored.

A. Definitions of Terms

As used in this document, the word dgyige refers to a
printer or card punch mentioned on a PRPH card in the B08
configuration deck. The deyice game is the unique identification
of the device as given on the PRPH card (e.g., "prta", "puna“,
etc.); it is also the name by which the device is attached by the
I/O Daemon.

A dgyigg glass is a group of devices which are considered
interchangeable; in particular, all devices in any one class

2

~u/

ad

*3

/
f\

T

h

MULTICS OPERATING STAFF NOTE MOSN 6.h.3.2
Revision 0

take their output requests from the same set of queues. (Thus a
user selects the device glass which he wishes to perform his
request, rather than the particular device.) Device class names,
which are 8 characters or less in length, should be chosen so as
to be mnemonic, but are not otherwise restricted.

As a matter of convenience, there is generally a
correspondence between each device class and a registered login
id for a driver process, such that the login id is composed of
the device class name prefixed by the characters "lod_". This
correspondence is not enforced within the I/D Daemon, however; in
theory, any registered user with appropriate access and
privileges could run as a device driver.

Keywords fall into four general categories: glgbal keywords,
which give information pertaining to the entire I/O Daemon
subsystem; definition keywords, which give the names of devices
and device classes; ggfaul; keywords, which supply default
attributes for all devices in a given class; and ggegifig
keywords, which are specific to individual devices.

B. Global Keywords

There are only three global keywords; they must all be
present in the file. All global keywords begin with capital
letters.

Time

The "Time" keyword sets the time period during which
requests are to be saved after they have been performed. its
value is a decimal integer giving the number of minutes each
request is to be saved.

Max_queues

The "Max_queues" keyword gives the maximum number of
priority queues that may exist for any device class. its value is
a decimal integer. Owing to a present implementation restriction,
Hax_queues should not be greater than H.

The "Time" and "Max_queues" keywords must be the first two
keywords in the file, but it does not matter which one comesfirst.

3

MULTiCS‘OPERATlNG STAFF NOTE MOSN 6.i+.3.2 v
Revision 0

End ‘*4

The "End" keyword indicates the end of the io_daemon_parms
file. It has no value, but is followed immediately by a
semi—colon.

C. Definition Keywords

Device_class

The "Device_class" keyword defines a device class. its value
is a string of at most 8 characters, which is the name of the
device class being defined (e.g., "printer", "punch", etc.). No
two "Device_class" keywords may have the same value.

device

The "device" keyword defines a single device. its value is a
string of at most 8 characters, which is the name of the device
being defined. As explained above, this name is the same as the
device identifier on the PRPH card for the device (except in the
case of "remote" devices, as explained below). if the same
device is to be defined in more than one device class, it should
be defined by a separate "device" keyword within the device-class
definition of each device class to which it belongs.

The remaining keywords define attributes of devices. A
default keyword, which begins with a capital letter, applies as a
default to all devices within a class; a specific keyword, which
begins with a lower-case letter, applies only to the specific
device within whose definition it appears.

A deviqe-glass definition consists of the "Device_class"
keyword, followed optionally by one or more default keywords,
followed by one or more device definitions (see below). A
device-class definition is terminated by a new "Device_class"
keyword or an "End" keyword.

A geyiee Qefigition consists of a "device" keyword, followed
optionally by one or more specific keywords. A device definition
is terminated by a new "device" keyword, a new "Device_class"
keyword, or an "End" keyword.

The following general rules apply to the specification of
device attributes:

L} J

4
MULTICS OPERATING STAFF NOTE MOSN 6.k.3.2

Revision 0

1. A specific keyword present for any definition of a device
'T‘ overrides any corresponding default keyword that might apply

to that device.

2. The same specific keyword must not be supplied more than
once with different values for the same device.

D. Default keywords

Accounting

The "Accounting" keyword defines the type of accounting to
be done for use of devices in the device class by the I/O Daemon.
its value is either the character string "system" or the absolute
pathname of a subroutine to be called to account for each
request. If the value is "system", then the submitter of the
request is charged for the number of lines printed; a subroutine
name presumably refers to a user- or installation-supplied
subroutine which will be used to record per-request accounting
information. Such a subroutine would be supplied for devices
whose driver processes run on a project (specified by the
"Project" keyword) which is being charged like a regular user for
CPU time, etc.

If the "Accounting" keyword is not supplied for a devicef“ class, "system" is assumed for that device class.

/K

Dim

The "Dim" keyword names the default DIM (Device Interface
Module) through which devices in the current class are to be
attached. It applies to any device defined in that class for
which no "dim" specific keyword is supplied. Its value is a
string of up to 32 characters.

Element

The "Element" keyword gives the default value by which the
bit count of a file should be divided to obtain the number of
elements to be output; in other words, it is the "element size"
used by the relevant DIM, expressed in bits. Its value is a
decimal integer. if the "Element" keyword is not supplied, a
default value of 9 is used (i.e., the element for output is
assumed to be one character).

5

MULTICS OPERATING STAFF NOTE MOSN 6.k.3.2
Revision 0

Project

The "Project" keyword indicates what project drivers for the
device class are logged in under. its value is a string of up to
9 characters. it is used by the dprint and dpunch commands to
ascertain if the driver has sufficient access to process a user's
file. If it is omitted, the project name "SysDaemon" is assumed.

Type

The "Type" keyword is used to indicate whether the devices
in a given class are printers are card punches. its value must
be either "print" or "punch"; if it is not supplied, "print" is
assumed. The value "punch" is valid only if the device class
name begins with the characters "pu".

E. SDecific keywords

dim

The "dim" keyword names the DIM to be used with the device
for which it is specified. it overrides the "Dim" keyword, if
any, for the device class. Either a "Dim" keyword or a "dim
keyword must apply to every device defined in the file.

element

The "element" keyword defines the element size for a given
device. If neither the "element" keyword nor the "Element"
keyword is supplied for a device, a default value of 9 is used.

default_class

The "default_class" keyword specifies the name of the device
class in which a device is to run if no device class name is
specified when its driver process is brought up (see Section ll
of MOSN 6.h.3, "Bringing Up the I/O Daemon"). If no
"default_class" keyword is supplied, the device class must always
be specified explicitly when the driver comes up.

remote

The "remote" keyword is used to specify a variety of special
parameters for a remote device (or device combination). The

6

wl

u \/

1

}~

fs

/\

MULTICS OPERATING STAFF NOTE MOSN 6.h.3.2
Revision O

value for the "remote" keyword is a series of subkeywords
connected to values by "=" signs, separated from each other by
commas, and ending with a semicolon, thus:

remote: subk1=vall,
subk2=val2,

SUbk=ValQ;

where the subki are the various subkeywords, and the vali are
their respective values.

A remote device may really consist of both a printer and a
card punch, in which case it is conceptually two devices in two
different device classes (from the point of view of the I/O
Daemon); these two devices are defined separately in the
io_daemon_parms file under separate "device" names, but connected
by a generic name for the remote device as a unit. This name is
defined by the "name" subkeyword described below; it is the name
supplied to the driver of a remote device when it first comes up.

If a device is defined with the "remote" keyword, then the
name given as the value for the "device" keyword is not the name
on a PRPH card; it is used internally by the I/O Daemon and may
be any 8-character name (provided, of course, that it is not the
same as any other device name).

A remote device always runs in a default device class. This
means that if a device is defined with the "remote" keyword, the
"default_class" keyword must also be supplied for that device.
This also means that a remote device cannot be defined more than
once with the same "device" keyword in different classes.

F. Subkeywords for remote devices

with the exception of the "name" keyword, each subkeyword
described below need only be specified once per remote device.

name

The "name" subkeyword has as a value a string of up to 8

characters, which is the generic name of the remote device. It
must always be supplied with the "remote" keyword, and must be
the first subkeyword following the "remote" keyword.

7

MULTICS OPERATING STAFF NOTE MOSN 6.h.3.2
Revision 0

ttY_name

The "tty_name" subkeyword is used if the remote device has a
dedicated hard—wired communications line reserved for it, in
which case the value for this keyword is the 6-character channel
identifier for the communications line as it appears in the
II ‘ II -Clines iile.

password

the "password" subkeyword defines an 8-character password
which must be input when the remote device dials up. If the
"tty_name" subkeyword appears, the "password" subkeyword is
optional; otherwise it is required.

user_input_dim

The "user_input_dim" subkeyword defines the DIM to be used
to read the "user_input" stream from the remote device. It must
be supplied once for each remote device.

user_output_dim

The "user_output_dim” subkeyword defines the DIM to be used
to write the "user_output" and "error_output" streams on the
remote device. It must be supplied once for each remote device.

Examples 1 and 2 following show sample io_daemon_parms
files. Example 1 is a simple case to allow the system to run 2

printers and one punch. Example 2 illustrates a few more of the
features described above; it would be used to run 2 printers, one
card punch, and one remote printer-punch combination. It
describes a configuration in which the system (i.e., "SysDaemon"
processes) would normally run one printer and the punch, while
the other printer and the remote device are run by processes on
the Multics project; however, the system is also capable of
running the second printer.

8

-

‘~d

\/

wl

,_,¢

MULTICS OPERATING STAFF NOTE MDSN 6.h.3.2

EXAMPLE 1: Simple io_daemon_parms file

’\ /* Everything possible is defaulted: all drivers run on SysDaemon project,
use "system" accounting; printers use 9-bit element size */

Time: 60;

Max_queues: 3;

Device_class: printer;
Dim: prtdim;

device: prta;

device: prtb;

Device_class: punch;
Type: punch;
Dim: pun2l;
Element: 1; /* pun21 DIM uses 1-bit elements */
device: puna;

/‘ End;

/\
9

1/!“

MULTICS OPERATING STAFF NOTE MOSN 6.5.3.2

EXAMPLEZ : More complete io_daemon_parms file

\-/
Time: 60, /* keep requests for one hour */
Max queues: 3;

Device_ciass: printer; /* regular on-site printer */
Dim: prtdim_;
Element: 9; /* This could be omitted */
Accounting: system; /* S0 could this */

/* runs on SysDaem0n project */
device: prta; /* first printer */
default_ciass: printer; /* defaults to this class */

device: prtb;
default_class: cprinter; /* this printer defaults to */

/* different class but can */
/* run in this one */

Device_ciass: 'cprinter; /* special printer class */
Type: print; /* optional */
Accounting: >udd>m>lib>e>io_acct;

/* uses different accounting */
Project: Multics; /* Not SysDaemon */
device: prtb; /* also runs in "printer" class */
dim: prtdim_;

Device_ciass: punch; /* Card punch */
Element: 1; /* 1 bit = 1 element */
Dim: pun21;
Type: punch; /* required */
Project: SysDaemon; /* optional */
device: puna; /* note absence of default class */

/* class must always be supplied */
Device_ciass: remote; /* remote printer class */
Accounting: >udd>m>rsc>remote_acct;
Project: Multics;

device: prtrem; /* internal name of printer */
dim: g115_print;
default_class: remote;

remote: name=mohawk,
tty_name=tty6l3,
user_input_dim=g115_reader,

10

-l

\J

_,-

/-\

/§

/\

MULTICS OPERATING STAFF NOTE MOSN 6.h

EXAMPLE 2: More complete io_daemon_parms file (cont.)

user_output_dim=g115_tprint;

Device_ciass: pun_rem; /* remote punch ciass */
Project: Muitics;
Accounting: >udd>m>rsc>remote_acct;

/* same accounting as for */
/* remote printer */

device: punrem;
dim: g115_punch;
defau1t_ciass: pun_rem;
remote: name=mohawk;

/* rest of info is already */
/* supplied by definition of */
/* remote printer */

End;

11

gnu».

MULTICS UPERATING STAFF NOTE MUSN 5.“.3;2

Ill. THE "create_daemon_queues" COMMAND

The create_daemon_queues command is used to create user “’
request queues, which are message segments in which user requests
are placed by the dprint and dpunch commands.

Names: create_daemon_queues, cdq

Usage: create_daemon_queues -control_args—

The following are acceptable control arguments:

-directory path
-dir path The queues will be created in the

directory whose pathname is path, which
may be either an absolute or a relative
pathname. The io_daemon_parms file to be
used must be in the directory path. If
this control argument is omitted (as it
would be for normal use), the directory
>daemon_dir_dir>io_daemon_dir will be
used.

-default class_name
-df class_name The device class specified by class_name

will be used as the defualt when a user
enters a dprint command without the
"device_class" control argument. ‘ad

—default_punch class_name
-dfp class_name The device csass specified by class_name

will be used as the default when a user
enters a dpunch command without the
"device_class" control argument; thefirst two characters of class_name must
be "pull.

The effect of the command is to create a group of message
segments for each valid device class, where the valid device
classes are determined from the contents of io_daemon_parms. Each
queue has a name of the form:

CLASS_.mS

where CLASS is the device class name, and Q is the priority level
of the queue; one such queue is created in each class for all Q
from 1 to "Max_queues" as specified in io_daemon_parms. In
addition, the names:

*~J

12

f\

’—\

/’\

MULTICS OPERATING STAFF NOTE MOSN 6.h.3.2

default_Q.ms

for Q = 1 to Max_queues are added to the queues for the class
specified by the "-default" control argument, if it is present;
similarly, the names:

pun_dflt_Q.ms

are added to the queues for the class specified by the
"default_punch" control argument.

if any of the queues already exist, they are left alone
(except for possibly having default names added or removed); when
a queue is created, it is given the following extended access
control list:

adros lO.SysDaemon.*
aros *.*.*

If desired, the extended ACL can be modified by means of the
message_segment_setacl (mssa) command. For these queues, "s"
access allows a user to find out how many requests are in the
queue; "a" and "0" together allow him to add requests and to read
and delete his own requests; "r" allows him to read any request;
"d" allows him to delete any request.

when a default class is not specified, any existing default
is left alone; if a default class is specified, then if the
default names were present on a different class of queues, they
are removed from the queues for that class.

The print_io_devices (pid) command described in the MPM can
be used to find out what classes exist and what the default
classes are at present.

IV. OPERATING THE I/O DAEMON IN "TEST" MODE

The I/O Daemon can be tested within the regular Multics
command environment by using special "test" entries. A separate
process must be logged in for the Coordinator and for each driver
to be tested. To set up a Coordinator in "test" mode, enter the
command:

iodc_overseer_$test DIR

where DIR is the absolute pathname of the directory to be used
for all data bases. The io_daemon_parms, daemon_search_rules_,
and user request queue segments must already exist in DIR.

For each ordinary driver process to be tested, enter the
command:

13

HULTICS OPERATING STAFF NOTE MQSN 5-Q-3-2

iodd_overseer_$test DIR

where DlR is the same as for the Coordinator. For a driver for a

remote device, enter the command:

iodd_overseer_$r_test DIR

The operation of the daemon in "test" mode is exactly as
described in MOSH 6.h.3, "Operation of the I/O Daemon," except
that the following additional commands are valid for both
Coordinator and driver processes in "test" mode.

debug

The Multics debug command will be invoked. After exit from
the debug command (by means of the .q request), the process will
await a further command.

pi

If entered after a QUIT, this command will signal the
condition "program_interrupt". This command is useful if the
Multics debug command (or a program invoked from the debug
command) produces large amounts of unwanted console output. The
"pi" command is invalid if not preceded by a QUIT.

return

This command causes the Coordinator or driver to return to
its caller; in general, this will mean a return to Multics
command level. From the internal point of view, it has a similar
effect to the l/0 Daemon "logout" command, but the "testing"
process is not destroyed.

in addition, if an I/O Daemon process gets an unclaimed
signal in "test" mode, it will, after printing the usual error
message, invoke the "debug" command. Upon exit from debug, a
driver process will continue with its normal error recovery. A
Coordinator in "test" mode, however, will await a further command
after return from debug: a "return" command will return the
process to Multics command level; a "start" command will resume
processing from the point of error (like the regular Multics
"start" command); any other response (including a blank line)
will cause the Coordinator to continue with its normal error
recovery procedures.

lh

