
__ _

DEVELOPMENT OF AN EXPERT SYSTEM ENVIRONMENT
FOR USE WITH A WARGAMING SYSTEM

Paul E. Rubin, Ph.D. and Jon Franklin Buser
Computer Sciences Corporation
304 West Route 38, P.O. Box N

Moorestown, NJ 08057

ABSTRACT

This paper presents a discussion of the
design of the Tactical Control Directive
(TCD) environment for the Enhanced Naval
Warfare Gaming System (ENWGS). TCD's are a
system extension which allows user's to
construct and execute complex naval
doctrine and tactics within the paradigm of a
rule based expert system. Each of the major
TCD components TCD language (TCDL),
compiler, inference engine, TCD library
configuration management tools, automatic
user input form generation, and run time
reports - is presented with respect to major
design issues and decisions; and·
implementation constraints imposed by a
military user community.

INTRODUCTION

The Enhanced Naval Warfare Gaming system
(ENWGS) is a large scale, computer based
interactive wargaming system. It support~
curricula and studies at the Naval War
College and Tactical Training Groups.
Although the system provides players with the.
capability of using primitive operations such
as launc~ing. aircraft, acquiring detections,
or engaging in combat, it is often desirous
to automatically create more extensive sets
'of c~mmands to be exercised by the system.
Tactical Control Directives (TCD's) will
provide an environment for the
construction and execution of such naval
doctrine and tactics within the paradigm of a
rule based expert system. The goal of this
system extension is to provide the user
community with a general utility that can be
used to combine primitive system operations
and previously defined TCD's into new and
increasingly more complex tactical and
doctrinal procedures. TCD's will be written
primarily by the user community who are
relatively inexperienced with programming in
rule based languages. Creation and
installati~n.of new TCD's will be an ongoing
~ser ac~ivity that will not require
intervention by the system maintenance
.staff.

TCD 1 s interact with the system in much
the same manner as the game player. Tne·
commands available to TCD's are basically the
same as those available to the player, and
the events and data available to the TCD
writer are similar to those the player can
schedule, observe, or report. A TCD can
appear to make decisions similar to those a
human expert, in this case a naval officer,
would ma~e given ~he same situation. For

this reason, we view TCD's as small expert
systems. The TCD's differ from other expert
systems in that the decision making process
is highly structured; predictability is
valued above the creativity that would be
exhibited by an expert naval officer.

HIGH LEVEL DESIGN

The TCD environment consists of six
major components: TCD language (TCDL), TCDL
compiler, inference engine, TCD library
configuration management tools, automatic
generator of user input forms, and various
reports. Figure 1 shows these components and
their interactions. The development process
is not unlike a computer programming
development process. TCD's are written in a
development environment, compiled, and
written into a TCD library. The game setup
and initialization process then selects the
TCD's to be used for a game and loads them
into the gaming environment.

Some components run in the development
environment, and some run in the ENWGS game
environment. The TCD library is the
component that connects the two operating
environments. TCD 1 s are written, compiled,
and loaded into the TCD library in the
development environment. At game
initialization, the TCD forms are downloaded
to the participant's workstation.

TCD 1 s are eKecuted in the game
environment. To execute a TCD, a
participant fills in and transmits a TCD
form. The subject TCD is loaded from the TCD
library into the Inference Engine prior to
execution. In the course of executing a TCD
the Inference Engine may call TCD primitives,
extract game data information using View
functions, or monitor asynchronous events
that trigger Wait functions. The TCD
primitives make changes to the game data.
This game data is the same data used by the
ENWGS models for their operation. Execution
reports are provided to the game participant
by the Inference Engine. Static library
reports are available in both the develooment
and game play environments. ~ '

TACTICAL CONTROL DIRECTIVES LANGUAGE (TCDL)

The Tactical Control Directive Language
(TCDL) was developed explicitly for defining
TCD's. TCDL is a rule-based language that
incorporates features of more conventional'
programming languages. The rule structure
implemented was patterned after that in OPS5
(Brownston et al. 1985), and then specialized

lsTCDValld? TCD
Writer

Development
Environment

ENWGS
Game
Environment

Event
Monitor

Usage
Info.

Wait
Functions

TCD
Compiler

Is
TCD
Valid?

TCD
Library

TCD
Rules !Load

Inference
Engine

View
Functions

Game
Data

Read and Write
Game Data

Usage Info.

Forms

Reports
and

Forms

Runtime
Reports

Execute
TCD

Request
Form
Generation

Form
Generator

Game
Participant

Execute TCD Primitives

TCD
Primitives

Figure l. TCD System Components

for the ENWGS TCD application. These
specializations were driven by the design
goal of putting effective TCD writing within
the reach of relatively inexperienced
programmers. To achieve this goal, language
design focused on three primary areas:

l. Rule structure
2. Error detection/validation
3. Data structures.

Rule Structure

In defining the syntax for the
specification of TCDL rules, much effort was
placed on allowing the TCD writer to use
terms that were familiar to his/her
environment. The development staff views
rules as a collection of conditions on a
left-hand-side (lhs), which, when all true
resulted in the execution of procedures on a
right-hand-side (rhs). However, in the
interests of ease of presentation to the
prospective user community, it was felt that
the abstract concepts of lhs and rhs would
complicate the understanding of TCD's. From
the user's perspective, each rule represents
an action or set of actions (rhs) which
should be taken when a given situation (lhs)
arises. Thus, the syntax developed that a
rule consisted of a SITUATION part, where the
various conditions are specified, and an
ACTION part where the procedures to be
followed are specified.

The conditions of the SITUATION part of
a rule are written as a set of implied IF
statements. Implied, because the "IF" itself
is not part of the condition. The TCD writer
has a grea~ deal of flexibility in the
specification of conditions. Previously set
local variables or input parameters may be
tested as in traditional programming
languages. View Functions are also provided
which give access to the game data base,
thereby allowing these quantities to be
tested. Most importantly, however, is the
capability to test for asynchronous events
within the gaming environment. This feature
is provided by a set of Wait functions.
Each Wait Function is associated with a type
of event, such as a detection, a launch
completion, or a low fuel alert. Wait
Functions return boolean values which are
false until the referenced event occurs, at
which time they return a value of true.

The ACTION side of a rule resembles a
conventional procedural programming
language. TCD primitives are commands that
correspond to keywords that are used by a
player during game play. These are
specified with parameters that map form
fields that a player would fill in. In this
manner, execution of the ACTION part of a
TCD rule mirrors the activities of a human
game player. Therefore, the writer of a TCD
can think in the familiar terms of ENWGS
game play keywords when defining TCD actions.
The use of View Functions and local
variables within the ACTION section simulate
the human player's ability to observe and
record data that is generally provided via
the various ENWGS reporting mechanisms.

Error Detection/Validation

The distributed nature of TCD's allows
ample opportunity for data errors to enter
the process which could potentially render
the entire TCD mechanism useless. TCD 1 S are
defined, requested, and eventually executed
at different times with respect to the gaming
environment. Definition, i.e., writing a
TCD, takes place outside of the ENWGS
environment. Request of a TCD is performed
by a player during game play, at which point
values for the TCD input parameters are
provided. Execution of an action within the
TCD, and use of the TCD input values may
occur at some indeterminate future time.
Several steps were taken in the development
of TCDL to deal with data validation issues.

TCDL is a strongly typed language like
Pascal. All TCD input parameters and local
variables must be declared with a data type
prior to use within any rule of a TCD. The
data types of TCDL include the usual types
of ''integer•• and "character'', but also
include specific ENWGS data types. Examples
of these are "command id", "course",
"speed", and "latitude". The parameters for
functions and primitives, and the return
value of the functions are specified using
these data types. The TCDL compiler
enforces the strong typing and provides
rigorous parameter type checking at compile
time. Thus, it will not be possible to have
a TCD execute during play and cause a fault
because it tried to provide a "command id" to
a primitive that required a "speed", Data
types are also used to implement runtime
data validation.

Data Structures

Because the members of the intended user
community are not "p:r;ogrammers 11

, it was not
considered prudent to endow TCDL with a rich
set of user accessible data structures. By
the same token, a complete absence of user
data structures would also be
unsatisfactory. The approach finally adopted
was to provide a limited, but useful set of
structures.

The capability to declare, set, and
reference local variables is provided by
TCDL. As stated above, these must by typed
before use, and the compiler will enforce
data type compatibility when assignments and
references are made. Although local
variables could be used to implement an
involved state space within a TCD, the
judicious use of Wait and View Functions
renders this unnecessary in most cases.
Thus, it is envisioned that local variables
will find most use as a scratch pad within a
TCD, or to save values returned by some
system models.

The other major data structure to which
the TCD writer has access is the 0 bag". A
bag is an unordered collection of (similar)
items. A bag most closely resembles an array
from conventional programming. Since TCD's
are intended to implement both single and

multi-platform tactics, a method was needed
to deal with an uns.pecified number of
"actors" within the TCD. Clearly, it would
not be adequate to have one TCD for a one
helo exercise, another for a two helo
exercise, and so on. The bag construct helps
solve this problem. Actors, such as launched·
aircraft, can be added to a bag after they
launch. Assignment to specific activities.
within the TCD can then be controlled by
selecting aircraft from the bag until the
bag is empty. MoreoVer, various criteria can
be placed on these-;selections. For example,,
the "closest" aircraft· to a hostile can be
selected to intercept and engage.

TCDL COMPILER

A key element in the development of the
TCD facility is the TCDL compiler. Several
initial questions could be addressed through
the use of a prototype compiler providing
minimal functionality. For example, there
was initial concern over whether the language
constructs being specified were rich enough
for TCD's to be written to replace the
existing functionality. A concomitant was
whether we wOuld be able to specify and parse
the needed constructs. In order to help
resolve these issues, development of TCDL
and its compiler were the first development
tasks initiated.

An early decision was made to utilize
the parser generator and iexical analysis
tools available on our development system.
(Multics) for building the ·compiler. The
parser generator - called reductions, or rdc

allowed easy separation of language
construct, syntactical and semantic analysis,
and code generation issues. The language
syntax was developed via a BNF
specification, and translated into the format
accepted by rdc. Although a bit more
primitive than other compiler generators,
such as yacc on Unix, rdc was found to be
completely adequate for the task. Using
this tool allows relatively easy modification
of the language. In addition, we were able
to specify a superset of the TCDL features
to be in the initial delivery.

A running parser was the first goal of
the system. This provided us with a
starting point for driving other aspects of.
the system, such as forms generation and.
reports. Also, a running compiler, even if
not complete with respect to code generation
or error messages, provides an extremely
useful tool for developing the initial set
of TCD's. Since the requirement was to {at
least) replace the current functionality
provided by composites, early warning of
problems in writing such TCD's was paramount.
Moreover, TCD 1 s developed in this manner
provide the test cases for eventual system
acceptance.

INC~ERENCE ENGINE

The TCD Inference Engine is the softwa~e
that causes the execution of rules in a TCDL

program. Abstractly, the Inference Engine
can be thought of as a device that constantly
cycles through the rule set of each
executing TCD. On each cycle it will
identify the conflict set: the set of rules
that are eligible to fire at that time. It
will then select one rule from the conflict
set to fire. The selection process is based
on the conflict resolution strategy. This
abstract description of Inference Engine
functionality suggests that it is embodied in
a single module. In reality, its functions
are decentralized. Some of its functions are
performed by code that resides within the
TCD object code of each TCD. Others are
performed by an external, with respect to
the TCD object code, support environment.

The Inference Engine 1 s job is to analyze
TCD rules so that a single rule can be
chosen to fire. The principle criterion used
by the conflict resolution algorithm is
specificity. This means that a more
specific rule will be chosen to fire over a
less specific rule. A rule's specificity is
measured by the number of conditions
necessary for it to fire. The more
conditions given in the situation part of a
rule, the more specific it is. For example,
suppose rulel requires only an "on-hostile
detection" condition in order to fire.
Assume that rule2 gives two conditions:
11 fuel-status > 25%'' as well as "on-hostile
detection''. Both rules will be in the
conflict set if both the conditions of rule2
are true. However, rule2 will be selected
to fire because it is more specific than
rulel.

LIBRARY AND CONFIGURATION MANAGEMENT (CM)
TOOLS

The ENWGS development contract requires
that strict configuration control be
maintained on all code and data developed for
use within the system. TCD's are viewed as
user written extensions to the ENWGS command
repertoire. Being part of the system, they
therefore fall under the control of CM.
However, CM as performed on contract
deliverable software would defeat the
objective of providing the end user with a
tool to generate their own commands. The TCD
Library implementation is meant to satisfy
contractual CM requirements and at the same
time provide the user community with useful
tools for the continued development and
maintenance of TCD libraries.

TCD libraries are implemented using
Multics directory structures. Libraries are
implemented at a minimum of two levels: the
CM or system level, and the user level or
levels. A TCD may be added to any TCD
library only after it meets the following
criteria:

1. It compiles correctly.

2. Any TCD 1 s called from the candidate
TCD must already reside in the library,
and must be'called with correct
parameters.

3. The name of the
conflict with other
the library.

new TCD must not
TCD 1 s already in

In order to enforce these criteria,
system procedures have been developed to
manage TCD libraries. Thus, before the TCD
is checked into the library, the TCDL
compiler is called in order to force static
validation. Outputs from the compilation
process are then used by other tools to
enforce criteria two and three above.

The system level library is CM
controlled, and project Configuration
Control Board (CCB) approval is required
before TCD 1 s may be added to it. For
inclusion in the CM library, TCD 1 s must meet
the following additional criteria:

1. Output from all TCD reports must be
approved.

2. All functional testing of the TCD
must be passed.

In addition to this topmost system
library, user and game specific TCD
libraries are allowed. For the most part
these may be manipulated on a more casual
basis by the TCD development staff in order
to support TCD and game development. Each
level of library, however, is complete
within itself. A game is linked to a
specific library, and a workstation will only
have TCD's from one library resident at any
given time.

Within the context of the library
system, each TCD is viewed as a subdirectory
of the library directory to which it belongs.
Each TCD subdirectory consists of five
files, which can be considered the complete
specification of the TCD. These files are:

1. The TCDL source for the TCD.

2. The PL/l code generated by the TCDL
compiler for the TCD. This is retained
primarily to assist any required
debugging operations.

3. The executable
by the compiling the

TCD code, generated
above PL/l code.

4. The user input form associated with
this TCD. This file is downloaded to
the workstation when a game is
initiated, thus making the TCD
available to that player.

5. A file of the comments and Situation
and Action statements extracted from
the TCDL source code. These comments
and statements are used to support the
generation of static description and
execution reports.

AUTOMATIC FORM GENERATOR

A TCD is invoked
ENWGS the same as any

by a player within
keyword: the TCD name

is entered at the workstation as a command
to ENWGS. The workstation responds with a
form soliciting user input specific to that
TCD. Definition of user input forms for
ENWGS is normally a development/maintenance
activity. Although good tools have been
provided for this effort, they are not·
suitable for use by the writer's of TCD 1 s.
In addition, it was not deemed desirable to
require a maintenance staff to develop forms
in support of user TCD development.
Therefore it was necessary to provide an
alternate means of developing TCD forms
without the explicit participation of either
the TCD writer or the
development/maintenance staff.

An analysis of requirements for input
forms revealed that essentially all of the
information necessary to define a form is
known, or can be known, by the TCDL compiler
at compilation time. Thus a means of
automatic form generation was selected. The
user input forms are generated from the data
type information provided in the declaration
of the TC0 1 s input parameters. The close
coupling of TCD parameter declarations and
input form generation provides an excellent

·means of achieving TCD completeness,
consistency, and form correspondence.

TCD completeness means that a value is
supplied for every parameter of every TCD,
primitive, etc. referenced within the TCD.
The TCDL compiler verifies completeness at
one level by checking all such references
against its database of valid calling
sequences. In addition, the compiler
verifies that local variables used in such
calls are assigned values somewhere within
the TCD rule set. By ensuring that all
declared TCD input parameters appear on the
user input form, an additional level of
checking is achieved, since such appearance
forces the employer of the TCD to supply a
value.

A TCD is defined to be consistent if all
parameters used in calling sequences for
other TCD 1 s, primitives, and functions, are
of the correct type. Here again, the TCDL
compiler provides support by enforcing rules
of data type validity when processing such
argument lists. This enforcement is eased by
the strong typing characteristic of TCDL.
As with completeness, consistency is further
ensured by deriving valid input form data
types from the TCD parameter declarations.

TCD form correspondence is the one-to-one
mapping between TCD input parameters and
fields on the user input form.
Correspondence is an extension of
completeness and consistency, and is
absolutely guaranteed via the automatic
jeneration process. This is a key point. If
any partially or completely manual system
were used, none of these three
characteristics could be rigorously
enforced.

The automatic
within ENWGS is
distributed nature

form generation
complicated

of the system:

process
by the

host and

workstation. This can be seen by observing
that the host has knowledge of the TCD, and
hence its form requirements, but the
workstation is the system element that must
process the form. Moreover, both host and
workstation must agree on the messages that
will be used to communicate the user's input
from the form (workstation) to the TCD
(host). This issue has been solved by
generating the necessary form data on the
host when the TCD is compiled, and
downloading it to the workstation at game
initiation time. The workstation then
essentially integrates 'this data with the
standard form data, and the TCD becomes part·
of the ENWGS vocabulary.

The download process assists in
maintaining consistency of TCD 1 s at a
workstation. Depending on the specific TCD
library used for a game, different forms can
be downloaded for different games. In
addition, TCD's and their accompanying forms
may be selectively downloaded to a
workstation based on side or specific
player. Category identification embedded in
the download messages for each TCD form
enables the workstation to generate
selection menus containing the currently
available TCD 1 s as choices.

REPORTS

During the course of a game, a player
will require information about TCD execution
progress, or may need to know some overview
description of a given TCD. In order to
satisfy this requirement, various runtime
reports have been defined for the TCD
environment. These reports have been
designed so as to be useful to someone that
has no understanding of TCDL. Moreover,
care was taken to minimize the burden of
report generation on the executing software,
the TCD writer, and the system developers.
The solution was to associate essentially
free text with each TCD as a whole, and also
specifically with each SITUATION and ACTION
statement of the TCD. This allows the
reports to be natural language summaries of
the rules. The free text describing the TCD
is written as a set of tagged comments. The
text associated with the SITUATION and
ACTION statements is an integral part of
these statements. The language has been
designed so that the text and code are
contiguous. This results in self-documented
TCD's, which in turn yields easy review and
modification.

The following game
currently supported:

play reports are

1. Doctrine Summary Report. This
report will consist of tagged comment
text entered by the TCD writer and
extracted by the TCDL compiler.

2. TCD Structure Report. This report
must be intelligble to someone with no
knowledge of TCDL, yet still present the·
rule structure of the given TCD. Again,
our solution was to provide the text

associated with
ACTION statements
TCD.

the SITUATION and
of each rule in the

3. TCD Progress Report. This report
also uses the SITUATION and ACTION text.
Unlike the previous two reports which
are static in nature, this report
represents the dynamic nature of an
executing TCD. The report will
summarize which rules have fired. It
will also list for which conditions the
TCD is currently waiting.

4. Tracks on TCD
dynamic report, this
tracks that are
input TCD.

5. TCD's of
dynamic report,
of TCD 1 s, if
input track.

Track
this

any1

Report.
presents a

controlled

Also a
list of
by the

Report. Another
produces the list

that control the

In addition to the game play reports
above which support the player, there are
sets of reports to support TCD writers and
software development/support personnel:

1. TCD Cross
of all TCD 1 s
what TCD 1 s
TCD's invoke

Reference Report: a list
in a (specified) library,
are invoked, and which

them.

2. TCD Parameter Report: for each TCD
in the input library, a list of the
parameters and their data types.

3. Doctrine
as the game
name, but in
the game play

Summary Report: the same
play report of the same
the login, as opposed to
environment.

4. Symbol Table Report: a runtime
report to assist debug activities. ~his
report will list the name of each
object in the runtime symbol table of
the input TCD and its current value.

5. Conflict Set Report: also designed
to assist software development. This
report will list which rules are
currently eligible for firing and what
data or conditions are necessary for
them to fire.

EXAMPLE TCD

Figure 2 presents a simple example TCD
called air engage. This TCD is used to
perform -air-to-air and air-to-surface
engagements. The engagement model in ENWGS
monitors the platforms involved .. and
determines when each is capable of f1r1ng.
When an engagement (take) is requested in
advance, the model will automatically fire
weapons when the platforms are within range.
The rules of engagement (roe) cont~ol
whether or not a platform is allowed to fire
(roe free). The intercept model
automatically slaves the interceptor to the
target when the initial intercept is
complete.

% The TCD 11 air engage" is used for air-to-air and air-to-surface engagements.
% This TCD will recover the interceptor when weapons
% are low, when fuel is low, or when contact is lost on the target.

tcd air_engage (interceptor, roe, target, base);

dcl interceptor act trk parameter;
dcl roe boolean parameter init ("Y");
dcl target any_trk parameter;
dcl base base_cmd parameter optional;

vrule: validate interceptor;
situation: "Interceptor is not an air track 11

;

[track type (interceptor) 1 != ''air 11
;

action: "send an error message";
send error message (interceptor, 11 track must be type air 11

);

endru1e; -

arule: intercept target;
situation: "At beginning of tcd";
action: ''Modify roe and intercept target'1

;

modify roe (interceptor, roe);
intercept (target, interceptor, [max_speed (interceptor)]);

end rule;

rule: engage target
situation: "°Rules of engagement = free";

[roe weapons free (interceptor)] = "true";
action: "Engage the target 11

;

take (interceptor, target);
endrule;

rule: weap low recover;
situation:-"Interceptor is low on weapons";

[weapon alert level (interceptor)] = "true";
action: 11 Recover aircraft, mission complete 11

;

recover ac (interceptor, base);
terminate_tcd ();

endrule;;

rule: fuel low recover;
situation: 11 1nt'erceptor is low on fuel 11

;

[low fuel (interceptor)] =''true";
action: 11 Recover aircraft, mission complete";

recover ac (interceptor, base); ·
terminate tcd ();

endrule;

rule: contact lost recover;
situation: "IIlterceptor has lost contact on the target";

[lost contact (interceptor, target)] = 11 true";
action:-11 Recover aircraft, mission complete";

recover ac (interceptor, base);
terminat'e_tcd ();

endrule;

Figure 2. Example TCD

air_engage

The TCD air engage is used for air-to-air and
air-to-surface engagements. The engagement model will
automatically choose the appropriate weapon. If a return base is
not supplied, the interceptor will return to its home base.

Interceptor

ROE Free X..

Target

Return Base _

Figure 3. TCD Input Form

Figure 3 shows the user input form
associated with the example. Note that the
fields on the form correspond to the TCD
parameters. Field values are defaulted using
the term 11 init" in the parameter
declaration. Roe is defaulted to ''Y'',
meaning free.

The TCD performs the following
operations:

1. Validates that the interceptor is an·
air platform.

2. Modifies the interceptor's roe to
that supplied by the user's input.

3. Intercepts the
speed, where maximum
by a view function.

target at maximum
speed is supplied

4. Engages whenever the roe is free.

5. The interceptor returns to base and
the TCD terminates if weapons are low,
fuel is low, or detection is lost on the
target. Contact will be lost if the
target is destroyed or is able to evade
the interceptor's sensors. The
interceptor will normally return to its
home base. However, the player can
optionally provide an alternate
return base.

A more advanced version of this TCD could
request more forces if the interceptor has
to return without destroying the target.

ACKNOWLEDGEMENT

We wish to acknowledge the contributions
of our co-workers, especially Dr. David
Slater and Ms. Cheryl Williams. A hard
working, dedicated development team is a
necessity when developing complex systems
from new ideas.

The work reported in this
developed for tne Department of
Space and Naval Warfare Systems
under Contract No. M00039-84-C-0025.

paper was
the Navy,

Command,

REFERENCES

Browns ton,
Martin, N.
in OPSS,

L.; Farrell, R.;
1985. Programming

An introduction
Programming. Addison-Wesley.

Kant E.; and
Expert Systems
to Rule-Based
Reading, Mass.

