
March 2003: This file was created by scanning, OCR, and touchup of one of the originally-distributed
paper copies.
 M0131

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

PROJECT MAC

November 3, 1972

A SIMPLE LINEAR MODEL OF DEMAND PAGING PERFORMANCE

by

Jerome H. Sa1tzer
Room 519
545 Technology Square
Cambridge, Mass. 02139

Abstract: Predicting the performance of a proposed automatically

managed multilevel memory system requires a model of the patterns
by which programs refer to the information stored in the memory. Some
recent experimental measurements on the Multics virtual memory suggest
that, for rough approximations, a remarkably simple program reference
model will suffice. The simple model combines the effect of the infor-
mation reference pattern with the effect of the automatic management
algorithm to produce a single, composite statement: the mean number of
memory references between paging exceptions increases linearly with the
size of the paging memory. The resulting model is easy to manipulate,
and is applicable to such diverse problems as choosing an optimum size
for a paging memory, arranging for reproducible memory usage charges,
and estimating the amount of core memory sharing.

Key Words and Phrases: paging, demand paging, memory models, program
 models, performance measurement, multilevel memory systems,
 virtual memory, associative memory, memory usage accounting,
 Multics

Computing Reviews categories: 3.79,4.30, 4.32

__

Work reported herein was conducted by the Computer Systems Research Division
of Project MAC, an M.I.T. research program sponsored by the Advanced Research
Projects Agency, Department of Defense, under Office of Naval Research
Contract number N000l4-70-A-0362-0006.

Sa1tzer -- Linear Model -- November 3, 1972 -1-

Introduction

 Research in engineering includes identifying successively more

precise, but often less tractable, models of real-world phenomena.

Although it is only occasionally that a mathematically tractable model

happens to exactly represent the real-world situation, often an

approximate model is good enough for many engineering calculations. The

challenge in constructing approximate models is to maintain mathematical

tractability in the face of obvious flaws and limitations in the range

of applicability and yet produce a useful result. This paper proposes,

reports a level of confidence in, and analyzes what is probably the

simplest model of a demand paged virtual memory computer system.

The Model

 Prediction of performance of a proposed configuration of an auto-

matically managed multilevel memory requires a model of the patterns by

which programs refer to the information stored in the memory. If one has

sample reference strings, it is straightforward to simulate the performance

of a proposed memory configuration using the sample strings.[1] However,

one would prefer to work with a more compact representation of the reference

pattern than an exhaustive trace. Some recent experimental measurements

on the Multics virtual memory suggest that, for rough approximations, a

remarkably simple program reference model will suffice. The simple model

combines the effect of the information reference pattern with the effect of

Saltzer -- Linear Model -- November 3, 1972 -2-

the automatic memory management algorithm to produce a single, composite

statement: the mean number of memory references between paging exceptions

increases linearly with the size of the paging memory.

 We may make this statement of the simple model more precise with the

aid of figure one. The central processor is seen as the source of a string

of references to a virtual memory which is implemented by an automatically

managed (e.g., demand paged) two-level memory system. The automatic manage-

ment may be by hardware, as in the buffer memory of the IBM System 370/195, in

which case memory level one is bipolar silicon transistor memory, and memory

level two is core memory. Alternatively, the automatic management may be by

software, as in the Multics virtual memory, in which case memory level one is

currently core memory, and memory level two currently consists of magnetic drum

and disk memories. As seen below, a memory of three or more automatically managed

levels may be modelable as a two-level memory by drawing appropriate boundaries.

The simple model states that the mean number of consecutive references to memory

level one before something is demanded from memory level two (we call this

quantity the mean headway between page exceptions) is linearly proportional
 _
to the size of memory level one. If r is the mean headway between page

exceptions and Z1 is the size of memory level one, we have
 _
 r = aZ1 (1)

providing a simple model with a single parameter, a.

A Confidence Test

 Two empirical measurements are offered in support of the contention

that this crude model is sufficiently realistic to permit at least rough cal-

culations. First, the Honeywell 645 central processor contains a small, hard-

Saltzer -- Linear Model -- November 3, 1972 -3-

ware-managed associative ("look-aside") memory which retains frequently

used page table words using a Least-Recently-Used (LRU) algorithm to choose

which entries should be displaced by new ones. We may regard this associa-

tive memory as memory level one, and the actual page maps, in core memory, as

memory level two. Figure two indicates the observed mean headway between

associative memory "no-match" responses as a function of associative memory

size, as reported by Schroeder.[2] It is apparent that, within the range of

Schroeder's measurements, a linear model provides an approximation to the

observed behavior, represented by circles.

 A second, previously unpublished, set of measurements characterizes

the demand paging operation of Multics.[3,4] Multics at M.I.T. is operated

at different times with two core memory sizes. The paging area is managed

with an algorithm approximating LRU*. The system continuously records

summaries of paging activity, and of total time accumulated in each of three

major categories: "paging", "idle", and "useful". "Paging" time is accumu-

lated whenever a page exception is being processed by software. "Idle" time

accumulates whenever there is nothing a processor can do (either the processor

queues are empty, or all jobs being multiprogrammed are waiting for something

to be moved from memory level two.) Finally, "useful" time is that time con-

structively utilized by users of the virtual memory. By counting the total

* When a page is brought into memory level one, it is placed at the end of a
linked list with its hardware usage bit turned off after the initial reference
which brought it into memory. When a page is to be selected for removal from
memory the page at the front of the linked list is examined. If its usage bit
is off, it is selected for removal. If its usage bit is on, it is turned off,
that page is moved to the end of the list, and the new front page is similarly
examined. (This description is slightly simplified. Reference [4] should be
consulted for full detail.)

Sa1tzer -- Linear Model -- November 3, 1972 -4-

number of paging exceptions in, say, a two-hour period, and dividing that

number into the amount of useful time accumulated in the same period, we

obtain a suitable mean headway between page exceptions. This figure,

measured in units of memory references to allow comparison with other

systems, is plotted in figure three for two typical several-hour operating

periods with different memory sizes. The load on the system at those times

was an uncontrolled daytime population of thirty to fifty M.I.T. users. Al-

though the lack of control may seem worrisome, repeated similar experiments al-

most always produce results within about 10% of the typical results of figure three.

 If the straight line of figure three were extrapolated to the right as

far as 4,000 pages, it would predict a headway between page exceptions

of about 90,000 references. In fact, Multics uses an automatic three-level

memory system, with a drum of 4,000 pages at the second level, disk memories

at the third level, and an LRU algorithm governing placement between the

disk and the drum. A typical observed headway between disk references with

that drum size is 85,000 virtual memory references, which is in the general

vicinity predicted by the linear model. Further, when the drum size is

halved to 2,000 pages, disk traffic approximately doubles.

 To explore the effect of drum size more carefully, a specially

instrumented drum control package was developed. An LRU stack for the

Multics drum is implemented as a chained pointer list in memory level one.

Whenever a drum page is referenced, its entry on the LRU stack is moved to

the top of the stack by restringing it at the front of the chained pointer

list; when a page must be pushed off the drum the bottom one in the stack

is chosen. The added instrumentation consists of noting, whenever a page

Saltzer -- Linear Model -- November 3, 1972 -5-

is moved to the top of the LRU stack, its stack depth, and accumulating the

number of references at each stack depth. Because LRU is a stack algorithm[l]

one can directly calculate how many additional references to the disk memory

level would have occurred for each possible smaller drum size, by adding up

the number of references to stack depths greater than the suggested smaller

drum size.* Thus a single set of stack depth reference counts allows one

* This technique does not permit extrapolation to drum sizes smaller than the
size of memory level one since the drum maintains copies of pages in
level one, the top of the drum stack contains only those copies, and most
references to those pages (which are satisfied in level one) will not cause the
drum stack to be updated.

to calculate the mean headway between disk references which would have

occurred for every possible drum size. Figure four is a typical result of

this measurement and calculation, showing mean headways for drum sizes be-

tween 320 and 2,048 pages, at intervals of 64 pages. The statistics of

figure four represent approximately 63 minutes of running time, with 260,000

page movements from drum and disk to core. The system load, as usual, was

thirty to fifty uncontrolled time-sharing users. The measurements of figure

three are superimposed near the lower left corner of figure four, for

comparison. From figures three and four -- and the experience with a 4,000

page drum--it is evident that a linear model provides an approximate descrip-

tion of the paging behavior of Multics over a 40:1 range of memory sizes.

Measurements based on detailed tracing of all disk memory references are

underway, to explore the shape of the mean headway function in the region

between 4,000 pages and 75,000 pages, the current size of the on-line infor-

mation base at M.I.T.

Saltzer -- Linear Model -- November 3, 1972 -6-

 At least two sets of published measurements[5,6] report mean head-

way between page exceptions increasing much faster than linearly with memory

size. One difference between those measurements and the ones reported here

is evident: the programs in those measurements had been designed to operate

in the fixed (and relatively small) memory of the IBM 7094 or AN/FSQ7 computers;

the experiments consisted of "squeezing" these programs into spaces smaller

than the ones for which they had been designed. In contrast, essentially all

Multics programs have been written with the paged virtual memory environment

in mind. The authors of these programs have not attempted to fit their pro-

grams into some arbitrary size of memory; instead they used as much virtual

memory as they felt was economical for the task at hand. Although other re-

lated measurements have also been published[7,8,9] not enough information was

given to easily relate those measurements to the ones reported here.

 A second, perhaps more important, difference between the measurements

reported here and the others is that the Multics measurements are not of a

single program but rather of a system which is dynamically multiprogramming

a variable number of individual programs. Thus a variety of averaging and

smoothing effects are undoubtedly in operation. The relation between the linear

model, as applied to a system and, e.g., Denning's working set model[10], as

applied to a single program, is not immediately apparent.

Applications of the model

 The simple linear model is especially interesting because of the

ease of mathematical analysis when applying it to a variety of rough engineer-

ing calculations. Belady and Kuehner[11] made the same observation in 1969,

but measurements available at that time led them to study more complex,

Sa1tzer -- Linear Model -- November 3, 1972 -7-

exponential models. The following four examples illustrate just how far

one can go using the simpler, linear model:

 1. Calculating the most cost-effective size for a memory level.

 2. A memory usage charge which is independent of real memory size.

 3. Analysis of a three (or more) level memory.

 4. Estimation of the amount of sharing, or working set overlap.

 Consider first the estimation of the most cost-effective size for

memory level one in a two level automatically managed memory. If we label

the average access time to the first level t1 and to the second level t2

we will have an overall average access time, tm of approximately*

 tm = t1 + t2/aZ1 (2)

since, by the linear model, the relative frequency of references to memory

level two is 1/aZ1. If we assume that the overall system performance is

linearly proportional to the average memory access time, and that the system

rental cost is partitioned into two parts, Cp, which is independent of the

size of memory level one, and Z1Cm, which is proportional to the size of

memory level one, we have a cost per reference of

 Cost = (Cp + Z1Cm) (t1 + t2/aZ1) (3)

This function has a minimum with respect to Z1 at

 Z1 = √(t2/t1 * Cp/Cm * 1/a) (4)

allowing an estimate of the most cost-effective size for the first level

memory.

* We assume, for simplicity, that an access to memory level one is needed
 for every reference. We also assume that any processing cost of a page
 exception is included in t2.

Sa1tzer -- Linear Model -- November 3, 1972 -8-

 This formula predicts, for example, that for the Honeywell 645

computer system, for which t2 =1 15 x 10-3 sec., t1 = 1.5 x 10-6 sec.,

cp = $16,000/mo., cm = $160/mo/page, and a = 20* (from figure 4), the

optimum primary memory size with a single processor should be about 225

pages. This prediction correlates well with the empirical observations that

with 200 pages and one processor, Multics appears to be memory-limited, while

with 300 pages the one processor system appears to be processor-limited. A

similar application of this formula can be used to estimate the optimum size of

the associative memory for page table words used in most virtual memory processors.

 A second application for the linear paging model lies in developing

a charge for primary memory usage which is independent of the size of the

physical memory which happens to be in use at the time. The method is to

extrapolate the observed linear behavior of the entire system to the behavior

of a single program. (One must expect that such an extrapolation is at best

a rough approximation.) If a job requiring R virtual memory references is run

with a paging area of size Z1, the linear model predicts that the number

of page exceptions observed will be R/ajZ1. The value of aj is subscripted to

indicate that it is a measure of the mean headway between page exceptions

caused by this job alone. The combination R/aj is a useful measure of the

resource load of the job -- it increases with the length of the job, R, and

it decreases with decreasing paging activity by the job, as measured by aj.

To obtain an estimate of R/aj for a running job, we can simply count the number

of page exceptions (which should be approximately R/ajZ1) and multiply that

number by Z1, the size of the paging area in use at the time.

––––––––––––––––––––––––
* The units of a are inverse pages.

Sa1tzer -- Linear Model -- November 3, 1972 -9-

 If a charge is made proportional to this observed value of R/aj, it will

provide an incentive to the user to increase the locality of reference of the

job, thereby increasing the value of aj and the mean headway between page

exceptions, and thus reducing the paging load on the system. On the other

hand, if the job is operated with a smaller or larger paging area, because

of configuration or load changes, the charge to the user will remain approxi-

mately constant to the extent that the linear model applies. Such configuration-

and load- independent measures have been requested by many users[12] to sim-

plify accounting and budgeting; they also permit the installation to optimize

overall system effectiveness by adjusting the level of multiprogramming and

therefore the average size of the paging areas, without fear of job costs

changing.

 A memory charging scheme based on these observations has been

experimentally added to the Multics system at M.I.T. Since Multics is multi-

programmed, this scheme involves estimating the size of the paging area

available to the user by dividing the total paging area by the number of

processes being multiprogrammed. Each time a page exception occurs, the

paging area size is estimated and added to a running total for the process.

When the process finishes, this running total is proportional to the value

of R/aj, and an appropriate charge is computed. Initial experiments with this

strategy indicate that when the size of the paging area available to a single

program is varied by more than a factor of ten, the resource usage, as measured

by the estimate of R/aj, varies no more than 30 to 50%. This variation is a

measure of the extent to which an individual program does not exactly follow

a linear model.

Saltzer -- Linear Model -- November 3, 1972 -10-

 A third application for the linear model is the analysis of an

automatically managed memory system of three or more levels as in figure

five. If we assume that each level contains a copy of information in the next

higher (and smaller) level, then the linear model predicts that the mean num-

ber of virtual memory references before a reference to level j will be

(aZj-l), since Zj-l represents the effective size of the memory down to and

including level (j-l). Similarly, the mean number of virtual memory refer-

ences before a reference to level (j+l) will be (aZj). The fraction of

incoming memory references which fail to be satisfied by level j is thus

(Zj-l)/Zj). This formula permits estimation of necessary channel capacities

between the memory devices as well as overall memory system average access

time. Even more important, if one develops a model of access times and

costs such as that of equation (3) for a three level memory, one may calcu-

late, for example, whether or not one should discard the middle level and

invest instead in a larger memory level one. Such a calculation is applicable,

for example, to the question of whether future systems should be based on a

two level, LSI/videotape technology, or a third, (presumably disk storage)

level will be needed.

 Finally, we may use the linear model to estimate the amount of

information sharing which occurs in a multiprogram or multiprocessor environ-

ment. The problem here is that, in systems such as Multics, which permit

any page to be simultaneously used by any of several different processors, the

benefit in reduced memory space required may be difficult to measure.

Saltzer -- Linear Model -- November 3, 1972 -11-

Consider two processors which share a single two-level memory. A

single processor using the entire memory for itself has an observed mean head-

way between page exceptions of r1 virtual memory references, as in figure six.

Suppose that there is one job in memory for each processor, with memory more

or less evenly divided among the jobs. Then with two processors, and if no

sharing of pages in memory level one occurs, each of the central processors

might be expected to exhibit about the same mean headway between page exceptions

as does a single processor operating with half the total memory, namely r1/2 virtual

memory references. If sharing of pages does occur, the effect will be to in-

crease the actual observed mean headway between page exceptions to some larger

value, r2. Again using the linear model, we may directly calculate the size of the

effective overlap of the working sets of the two processors to be (r2-r1/2)/a

pages. The size of the overlap may be interpreted as the amount of level one

memory saved by use of opportunities to share pages. A similar analysis can

be made for a single processor performing multiprogramming on jobs with over-

lapping working sets. Measurements of Multics using this approach are

planned, but have not yet been carried out.

Limitations of the Linear Model

 The linear paging model must be viewed in the proper perspective -- it

is not a panacea for memory system engineering problems. It has been only roughly

validated by a few points measured on a single demand paging system. Clearly, the

model cannot hold for extreme values, since at the size for which everything fits

in primary memory, the mean headway between references to the secondary memory

should become singular; the linear model does not predict this effect. Analysis is

Saltzer -- Linear Model -- November 3, 1972 -12-

needed to discover what microscopic properties of program reference strings and

page selection algorithms might lead to the macroscopic behavior observed in

the measurements; such analysis should provide a direct calculation of the

value of the parameter, a.

 It may be that the experimentally observed linearity is a special

property of the LRU algorithm, which was in use in every experiment reported

here, or of some interaction of the LRU algorithm and the particular reference

patterns of users of the Multics system. Perhaps more measurements on a wider

variety of systems will reveal whether or not the model has any wider applica-

tion, or can be used for more than "back of the envelope" initial guesses

about paging system performance. In any case, when one is trying to predict

within a factor of two the appropriate size for a memory level (and few systems

today are engineered with much greater precision) the estimate of a linear

approximation supported by a rough measurement of the value of "" for the load

in question may be far more useful than having no model at all.

Acknowledgements

 Akira Sekino developed a hierarchical strategy for system modeling

which exposed the usefulness of a model of the mean headway between missing

pages.[13] Professor F. J. Corbato suggested that a linear model would be

remarkably easy to manipulate, and almost inevitably a satisfactory approxima-

tion at some level. Robert M. Frankston helped develop the use of the linear

model as a device for estimating load independent core memory use charges.

Akira Sekino helped investigate the linear model as a basis for estimating

sharing among parallel processes using the same virtual memory. Michael D.

Schroeder provided hardware measurements of the Honeywell 645 associative

memory, and Steven H. Webber invented and installed meters for measurement

of the Multics virtual memory.

Sa1tzer -- Linear Model - November 3, 1972 -13-

References

[1] Mattson, R.L., et a1., "Evaluation Techniques fur Storage Hierarchies,"
 IBM Systems Journal 9, 2 (1970), pp. 78-117.

[2] Schroeder, M.D., "Performance of the GE-645 Associative Memory While
 Multics is in Operation," ACM Workshop on System Performance Evaluation,
 Harvard University, (April 5-7, 1971), pp. 227-245.

[3] Bensoussan, A., Clingen, C.T., and Daley, R.C., "The Multics Virtual
 Memory: Concepts and Design," Communications of the ACM 15,
 5 (May, 1972), pp. 308-318.

[4] Corbató, F.J., "A Paging Experiment with the Multics System," in Ingard,
 In Honor of P.M. Morse, M.I.T. Press, Cambridge, Mass., 1969, pp. 217-228.

[5] Varian, L.C., and Coffman, E.G., "An Empirical Study of the Behavior of
 Programs in a Paging Environment," ACM Symposium on Operating System
 Principles, Gatlinburg, Tennessee, (October 1-4, 1967).

[6] Fine, G.H., Jackson, C.W., and McIsaac, P.V., "Dynamic Program
 Behavior under Paging," ACM Proceedings of 21st National Conference,
 P-66, Thompson Books, Washington, D.C., 1966, pp. 223-228.

[7] 0'Neill, R.W., "Experience using a Time-shared Multi-programming system
 with Dynamic Address Relocation Hardware," AFIPS Conf. Proc. 30,
 (1966 SJCC), Thompson Books, Washington, D.C., pp. 611-621.

[8] Belady, L. A., "A study of Replacement Algorithms for a Virtual-storage
 computer," IBM Systems Journal 5, 2 (1966), pp. 78-101.

[9] Baylis, M.H.K., et a1., "Paging Studies Made on the I.C.T. Atlas
 Computer," Proc. IFIP Congress 68, North Holland Publ. Co., Vol. 2,
 pp. 831-837.

[10] Denning, P.J., "The Working Set Model for Program Behavior,"
 Comm. ACM 11, 5 (May, 1968) pp. 232-333.

[11] Belady, L.A., and Kuehner, C.J., "Dynamic Space-Sharing in Computer
 Systems," Comm. ACM 12, 5 (May 1969), pp. 282-288.

[12] Taylor, A., "Should the Charges Vary with Each Job Execution?"
 ComputerWorld 5, 44 (November 3, 1971), p. 7.

[13] Sekino, Akira, "Performance Evaluation of Multiprogrammed Time-Shared
 Computer Systems," Ph.D. Thesis, M.I.T., Department of Electrical
 Engineering, in progress.

 Figure 1: The simple linear paging model.
__

 Figure 2: Associative memory performance of the Honeywell 645 computer.

 Figure 3: Mean headway between page exceptions in Multics
 for two memory sizes.

__

 Figure 4: Mean headway between disk references in Multics, for
 32 drum sizes, based on LRU stack depth measurements.
 The two points at the lower left are from figure
 three.

 Figure 5: A general multilevel memory system.

__

 Figure 6: Effective increase in memory size caused by sharing
 of pages in a 2-CPU system.

