
MULTICS STAFF BULLETIN

TO:

FROM:

DATE:

SUBJECT:

Distribution

V. L. Voydock, R. J. Feiertag

March 2, 1972

Modifications to Access Control

MSB-24

-1-

This document describes a number of changes that are being made to access control
mechanism. These include:

I. Removing the execute access attribute on directories and renaming (for clarity)
the other directory access attributes.

II. Returning better access control related status codes.

III. Associating two ring numbers with a directory.

IV. Removing the append access attribute on non-directory segments, and introducing
the ''maximum length" attribute.

V. Having one set of ring brackets per segment.

VI. Adding a "safety switch" to segments.

VII. Eliminating CACL's and replacing them with initial ACL's.

VIII. Eliminating the SPACL and automatically placing a "*· SysDaemon. *" entry on the
ACL of a segment when that segment is created.

Let us first establish some terminology. An ~-operation is an operation performed
on the attributes of a segment. This includes modifying its names, its ACL, its
"safety switch", and its maximum length, deleting it, and listing its attributes.
It also includes adding a segment to a directory. A £-operation is an operation
performed on the contents of a segment. This includes initiating the segment,
reading it, writing it, executing it, truncating it, ~etting and getting its bit
count and call limiter,

The major change proposed is to get ri.d of the "execute" directory access mode and
to say that one's right to perform a C-operation on a segment is completely deter
mined by the access infonnation appearing on that segment's ACL. That is, to ini
tiate a segment one needs non-null acc:ess to that segment, to gets its bit count,
get its call limiter or read it, read access, to execute it, execute access, to
write it, truncate it, set its c::all li.miter or set its bit count, write access.
One's access to the directory containi.ng the segment is not taken into account
when performing a C-operation.

In summary, C-operations on a SE~gment are entirely controlled by one's access to
that segment, and A-operations are entirely controlled by one's access to the
directory containing that segment. Let us now describe the various directory
access attributes:

I. status (formerly read) If a user has status access on a directory, he can list
the contents of the directory and find out any and all information about
the attributes of any entry in that directory, he cannot add entries
or change the attributes of existing en~ries.

-2-

II. modify (formerly write) If a user has modify access on a di rectory, he ean
change the attributes of existing entries, He cannot add entries or
list the attributes of existing entries,

III. append If a user has append access on a directory he may add entries to that
directory. He cannot delete entries or list the attributes of existing
entries.

The access combinations M and MA do not make sense (at least no one has yet found
a use for them). The file system, therefore, will not allow them to he placed on an
ACL. If a legitimate use for either of these combinations is found the restriction
can easily be removed.

Now let us consider what may happen if
entry whose pathname is >Dl> ••• >Dn>E.
access control) may occur.

a user tries to perfonn an operation on an
Six distinct error conditions (related to

I. error_table_$noentry (''Entry not found")

E does not exist.

II. error_table_$no_directory ("Some directory in path specified does not exist")

III,

One of Dl, ••• ,Dn does not exist.

error table $incorrect_access ("Incorrect access to directory containing entry")

The user does not have correct access on Dn to
perform the operation.

IV. error_ tab le_ $mod err ("Incorrect access on entry")

The user does not have the correct access on E
to perform the operation,

V. error_table_$safety_switch_on ("Attempt to delete segment whose safety switch
is on")

The user tried to delete E and the safety switch of
E is on.

VI. error table_$no_info ("Insufficient access to return any information")

The user does not have enough access to be given any
info rma. t ion.

~

-3-

The following flow charts describe what access checks must be made by all modules
of the supervisor that manipulate segments. These checks should be made when
a segment fault occurs as well as by the file system primitives.

The following principles are implicit in the flow charts. The motivation for them
is that they simplify the access checking mechanism and that they give away no
information that couldn't be determined by experimentation.

1. If one has non-null access on a segment (directory or non-directory) one has
the right to know of its existence and one's effective access to it.

2. If one has non-null access on a directory, one has the right to know of the
existence of particular entries in it and one's effective access to them.

As an aside, note that these principles imply that if one has non-null access to
a segment or non-null access on the directory containing the segment, the status
primitive should admit the segment exists and return one's effective access to
it -- even if one does not havE! status permission in the directory containing
the segment.

Let us now consider the flowcharts (we are performing an operation on a segment
whose pathname is >Dl> ••• >Dn>E)i:

-4-

i=O

1
' i=i+l 7

-I
ye_s _\

go to
i>n? 7 ©
Ino

Does Di
_y_e_s

exist?

J)io

Does user
have non-null no '\! return

access on 7 error_table_$no_info
Di-1?

J;es

return
error table $no directory - - -

-5-

Gl-operation What type
r------------------------+of opera

tion?

A-operation

Does E
exist?

yes

Does user have
correct access
on E to perform
the operation?

Does user have
non-null access
on E?

no

Does user have
non-nul 1 access
on Dn?

no

return

no

IliO
Does user have
non-null
access on

es

return error_ I
table $no1
info - -

return error
table_ $noentr

Try to perform
1--....... ~e_s ______ ·--------1' operation. Ifun-

successful, re
turn error code
that gives most
nformation

return error
1---"y_e_s ___ ~ tab le_ $moderr

return error
table_$in
correct acces

Does user have
correct access
on Dn to perform
operation?

no

access on Dn?

access on
Dn-1?

no

Does E
exist?

yes

Is E a
link?

no

.._ __ e_r_r_o_r ___ t_a_b_l_e ____ $n_o ____ 1_n_f_o-1~·------------·----------------~n~o~----------~hoes user have
- on-null access

n E?

yes

return. error
table $
incorrect_acces

-6-

Finally, we propose that every directory have two ring numbers rl, and r2 associated ~
with it. Rl is called the modify ring and is defined to be the highest ring in
which M and A access applies. R2 is called the status ring and is the highest ring
in which S access appplies. We require that rlsr2.

Now consider non-directory segments. They currently have the access attributes
read, execute, write, and append. The latter attribute append, was intended to
allow a process to add data to the end of a segment but not allow modification of
the data already in the segment. Unfortunately, we are not currently able to imple
ment this attribute. The append attribute is currently used to allow growing of
the segment, i.e., add new pages to the end of the segment. The current use of the
append attribute is not well known or well used. It is primarily used to artifi
cially set a maximum length on a segment, a feature that should be more properly
implemented by adding a ma.ximlUtl length attribute to a segment. Since there is
currently no proper use of the append attribute it will be deleted from ACLs.

Besides the access attributes, segments also have sets of ring brackets. The
current association of a set of ring brackets with a segment and a user has the
disadvantage of being difficult to explain and visualize. With the current scheme
a segment exists in different rings for different processes. A great deal of
simplification is achieved by having only one set of ring brackets associated with
a segment. This simplification causes no loss of functional capability because
any accessing rights that can be granted by multiple sets of ring brackets on a
segment can be achieved by having a procedure in a privileged ring simulate the
access associated with the segment. This modification also solves the problem
of what ring brackets are to be associated with a process not specified on the ~

ACL. Clearly with one set of ring brackets, those are the only brackets that apply.

The current delete primitive requires both write permission on the segment and
modify permission in the directory in order to delete a segment. This property
has been used as a means of providing self-protection against accidental deletion
of segments, i.e., if the segment does not have write permission, it cannot be
deleted. This has the strange property of protecting object segments but not
protecting data segments aga1nst deletion. It, therefore, seems more useful to
provide an attribute which allows any segment to be protected. For this purpose
the "safety switch" is introduced. If the "safety switch" is on, the segment
cannot be deleted. This added protection eliminates the necessity for requiring
write permission on a segment in order to delete it. Therefore, the delete primi
tt.i ve will require modify permission in the directory, and the "safety switch" being
off in order to delete a segment.

The CACL is a means by which access to a group of segments can be controlled easily.
Unfortunately the grouping used by the current CACL mechanism, i.e., all segments
in a single directory, is not an appropriate one. It is usually not the case that
all segments in a particular directory want similar access. Secondly, since the
CACL is logically appended to the ACL of a segment the effect of changing a eA.CL

-7-

upon the access to any particular segment is unclear. It depends on the contents
of that segment's ACL. Thirdly~, in a multiple ring situation, the rules concerning
modification and use of CACLs bE!come complex and unworkable and render the CACL
useless. For these reasons the CACL is to be eliminated from Multics. The detailed
arguments are given in the memo on CAC:Ls dated June 7, 1971.

Some useful features of CACLs will be preserved. Access to large classes of seg
ments can be modified by use of the star convention in ACL commands. Also default
initial values for ACLs can be E!Stablished by the use of the initial ACL.

The initial ACL is a means by which a user can specify the ACL to be added to a
newly created segment in a sped.fie directory. Each directory will contain two
sets of initial ACLs, one for nE!wly created directories and one for newly created
non-directory segments. Each of these two sets will contain an initial ACL for
each ring.

Each initial ACL will consist of a list of ACL entries. When a new segment is
created via a call to append, the appropriate initial ACL will be found by using the
type of the segment (directory 01r non-directory) and the current validation level.
The list of ACL entries containe!d in this initial ACL is then used to form the ACL
of the new segment. The ACL entries specified in the call to append are then added
to the new ACL.

New primitives and commands will be provided to manipulate initial ACLs. Separate
connnands will be provided to set entries (add or change), list entries, and delete
entries for both initial ACLs applying to directories and non-directory segments.
The validation level at the time of the operation will detennine which ring's
initial ACL is involved.

Multics now supports several service processes tenned daemons. In order to properly
perform their desJ_gnated functio1n these. daemons sometimes require access to user
segments. This is currently accomplished by a combination of two special mechanisms.
The Special Access Control List (SPACL) is the means by which daemon processes
gain access rights to any directory in the hierarchy. Secondly, whenever a direc
tory is created the CACL created for that directory is initialized to contain an
entry granting access to all segments in the directory to the daernon5. The SPACL
is to be eliminated because it grants full access by daemons to directories and
this access cannot be overridden. Users, therefore have no means of denying access
to their segments to processes appearing on the SPACL. Also the SPACL is not currently
visible to users, thereby making it impossible to detennine who has access to a
given segment. Since the CACL is being eliminated for reasons given earlier, that
means of granting access to daemons is no longer useable.

Users should be able to exercise
Maximal control enables users to
they do not have complete faith.
other user's processes, but also

saximad control over access to their segments.
deny access to any process or procedure in which
This control should not only include access by

system processes and procedures even if these

-8-

system processes or procedures are essential for normal service. A user having
critical information in the Multics hierarchy should be able to deny access to
those procedures which he has not been able to validate, however, in doing so
he must accept the risk that by denying these procedures access to his segments
he may be impairing the systems ability to properly handle these segments. For
example, if a user d·~ies· backup access to his segments they will not be backed up.

With regard to daemon access we can follow this policy by having these daemon
processes derive this access from the normal access mechanism. In order for the
daemon to access a segment, that daemon must have appropriate access on the necessary
ACLs. In order to deny a daemon access to a segment one simply declines to give
it access. However, this would impose a hardship on the majority of users who want
the daemons to have access by forcing them to be aware of daemon operation and
making them give the daemon access.

In order to transfer the burden of effort from the many to the few, two special
actions are to be taken. First, when a segment is created an entry for *.SysDaemon.*
should be placed on the ACL for that segment, and the initial ACL and ACL specified
in the append call should be added. For non-directory segments this daemon ACL
entry will permit rw access and for directory segments sma access. Secondly,
those ACL manipulating entries that entirely replace ACLs will contain a switch
in their calling sequences. One setting of this switch will cause the special
daemon entry to be logically added to the ACL before the specified entries. The
other setting of the switch will perform the normal function. These two measures
will assure that no user will naively remove daemon access but does allow those
users who wish to restrict access to do so simply.

Because of the special treatment given those processes in the SysDaemon project,
only those processes which truly must be daemons should be members of this project
and their function should be properly segregated and identified in order that
users may selectively choose those procedures they wish to trust and deny access
to others by specifically denying those daemon processes access to their segments.
For tbis reason human users, such as xepair, registered as part of the SysDaemon
project should be moved to some other project. Also only those functions specified
for ~ particular daemon process should be performed EI that process. Currently
the following daemon processes should be registered:

Backup
Retrieve
IO
Dumper

