

~ultics Stanaard Ob~ect sa~ment ~ March 6, 1972 Paqe 14

~~~~: rhe !nvokation of a trap Procedure involves some 
te:hni:al ~ifficulty in that a standard aroument list cannot he 
used in conjunction witn such a call, More specificallv, the 
ar;unent list is an arraY of pointers, normally residi~~ in the 
pr,cedijre's stack.frame~ vhosa value is computed at run ti~e. 
Ar~ument lists for trap procedures must be ~rovided at comPilP 
ti~e (because, by aafin1tion, they will be used Prior to the 
first invokatton of the traPP&d procedures) and mav tharef ~re 
co~tain Q..Q. po1nters, whose val~es are undetermined at that 
ti~a. rwo posSible solutions are recommended, 

!) t~e argument list is Prepared at run time bY an initialization 
p~o=e~ure, ~nd put into an external static data bas~ rointe1 
t' by the ·argument_Ptr' link. 

b) the trap Procedure uses a non.standar~ arqument list 
containing constant values rather than Pointers to variables 
(!,••• the •datmk_." procedure), 

In anY case, it is currentlY impossible for u&ers to specify 
traps before 11nk U~ing high leYel languages <e,9,, PL/1 Fortran 
etc,), s' that the use of this facility is praeticallY restric~ed 
to srsta~ proqr~mmers usinq the Multics assembly lanQUaQe ALM, 

'-.a..l. rhe tiinka9e section 

the Lin~a9e section is substructured into four distinct 
co~ponents, whi~h are a) a fixed-length header which always 
resi~es at the base 'f the linkage section, b) a variable lenQth 
1rea use~ for internal storage, c) a variable length structuFe of 
links and d) an array of first~reference traP•. These f;ur 
:omponents ~re allocate~ vithin the linkage section in the 
f oll,win~ sequence, 

header I I internal storage I I links I I traps 

with the further restriction that the link structure must be~in 
1t an even location C~ffset> within the linkage saetion, 

l ..... 3. .... 1.. I t\ e Lin k ~ g e s e : t i o n K •ad a r 

The heaaer of the linkage section has the following format, 

1ecl1re 1 linka~e_header ba$ed(P) aligned, 
2 object_se9 fixed binarr1 
2 def_sect1on bitC18) unaligned, 
2 first_referenca b1t(18) una11qned1 (NEW) 
2 sect1on_thread Pointer, 
2 linka~e_Ptr pointer, (NEW) 
2 be~in_links bit(1Q) unaligned, 
2 sect1on_length b1t(18) unaligne~. 



~ultics Stanaard Object Segm•nt ~ March 6. 1972 Paqe 15 

2 object_se9 bit(18) unalignea, 
2 comb1ned_length b1t(18) unaliqnedJ 

:>bje:t_~eg ~ reset to zero, 

ief_se:tLon - a pointer Crelative to the base of the ohjP.ct 
se~ment) to the base of the definition section, 

first_reference • a P:>intar trelative to the base of the link~qe 
sa~tion) to the array of first-reference traps, As exnlained 
belo~, these traps are activatea by the linker when the first 
reference to this object segment is made within ~ oiven 
pr:>cess, i.m.;..~~.t.1.D.t..: u1 explained in following note, thi~ item 
is :>varwritteft in the copied link!qe section with an rrs 
pointer to the object's definition section, Consequ~nt1v, its 
value may orily ·be val14ly 1nterroqate~ within the oriqinal 
linkage section template, 

!.w..t..1,; when the Object seqment ts loaded into memorv for the 
purp,se of axecut,on, the impure linkage section is cooied int6 a 
?ar~process writable aata base (known as the combined linkaqe 
section) and the preceding items (which are intefttioAallv 
allo:ate~ to occupy a contiguous pair of words) are overwritten 
with a pointe~ variable (645 ?Ts pair> Pointing to the base of 
the iefinition section), 

section thread • under certain applications, llnkaoe sections mav 
be threaa.ea together, to form a linkage 11.1.tJ such 1Jiplications 
are not aiscussed within this document. ?ha forward_t~rea4 is 
an absolute pointer to the next linka;e section in the list, 
allowi~g a lilt to spread over more than a ain;la seQment, 

linkage_Qtr ~ ii a Pointer, set bY the linker ~uring the 
of co~yin; ;nt.o the combined linkage section, to the 
linkage section w1thin the object saoment, Xt is used 
link unsnappino mecnani1m, 

process 
orifJil'lal 

bY the 

begi~_link9 ~ this 1s 8 pointer <relative to the base of the 
linkagt sect1on> to the first link (the base of the link 
stru::t~re). The length of the linkage heeder is known to be set 
to the fixed Value e, providin~ an imPlicit relative Pointer to 
tha base of the internal storage area, 

section_length - th1s is a fixe~ binary(18) Positive inte~er 
value representing the len;tn, in woraa, of the linkaqe 
section, 

Obje:t_~eg - when the linkage section is cOPie~ into the combined 
linkage section, the segment number of the ob,ect seqment is 
put into this item, 

,.-- : o ~ b i n e d l e n qt h - w he n s e v e r al l i n k a q e s e c t 1 on s are comb in e d i I\ t o 
a list, thiS item (of the first linkaqe section in the li~tl 



~ult1cs standard Ob~ect segment ~ March 6. 1972 

contains the length of the entire list. 

'-a,.l .... 2.. r h e In t er n al s t or a q a Are a 

the internal storage area is 
:o~Pilers to allocate internal 
predeternined structure to it, 

'-. ....l...l ?he Links 

an array of words use~ bv 
static variables; a~d h~s no 

r his is an arr~ y of 11 nits, each defining an exter?'I al sv 111no 1 
referenced bY this objact seqment whose effective addre~s is 
unkn~wn at cornp1le time and can be resolve~ only at the mo~ent of 
execation. 

A link must resi1a on an even address location 1~ memory. 
an1 ~ust therefore be located at an even offset from the base of 
the linkage section, the format of a link is, 

declare 1 link based(p) aligned, 
2 haader_pointer b1t(18) unaliQned, 
2 ignore1 bitC12) unaligned, 
2 tag bit(6) unaligned, 
2 e1<pression_.Ptr bit( 18) unaligned, 
2 1gnore2 b1tC12) unaligned, 
2 modifier bit(5) unaliqnedl 

header_~~inter ~ is a backpotntar (relative to the head of the 
link!ge section) to the head of the linkage section, It is, in 
ot~er ~ords, the negative value of th@ link Pair's offset 
within the linkage section. 

i;nore1 - unused. aesat to zero. 

tag - a :onstant (4~)8 which rep~esents a 645 fault ta' 2 and 
1istin:tlY identifies an unsnapped link, The snappe~ link (!TS 
pair) h~s a d1stirict (43)8 ta;. 

expression_.Ptr - Po1.nter (relative to the base of the definition 
se:tion) to tne expression structure aefinino this link. 

1;nore2 - unused. Reset to zero. 

no1if1er • a 64~ address modifier. 

ri~ure•2 illustrates the structure 0£ a link. 

l.-..3..~l!. .• The First-Ref erenee rraps 

It is someti~~s desire~ to effect some ~pecial 
initialization Of an object segment when it is first referenced 
for execution (i~e., linked to) in a 9iven process~ for @xamole 
in order to comPlement the object seqment with process dependent 



,-
,~ltics standard Object segment - March 6, 1972 Pacre 17 

information, such as a segment number. fhe array of 
first-reference traps contains relative Pointers to link~ 
iefining procedure~ to be invoked qpon first reference within A 

~r,cess, and corresPondin~ links to specif Y araument Pointers for 
such invokations (if anY). Normallr, a proce~ure mav have a 
single initialiZation tra~, however boun~ segment~ mAY specifv 
several, If ite~ 'first_referenca' in the linkage section heaier 
is "'"b then no sQch initializatioR is require~; a non-zero value 
~f that item iS a ral&tive pointer to the arrav of traps, ~n~ 
in!i:ates that ~n1t1alization is require~. 

ieclsre 1 fr_traps base~(P) aligned, (~F.~) 
2 decl~vers fixe5 bin, 
2 n_traps fixed bin, 
2 arra~Cn_traps) aligned, 
2 call_ptr bit(18) unaligned, 
2 arg_Ptr bit(1B) una11gnedl 

5e:l_yers - a const~nt de1i;nat1n; the format of this structure: 
whenever the structur1 is modified, so is this constant, 
allo~i~g system tools to easilY differentiate between several 
in:o~Pitible Versions of a sinqle structure, 

n_trsps ~ specifies th1 number of trap Pointers in this 
structure. An ob~ect s1gment, such as a bound object, maY h~ve 

·- several initi~liz~tion traps to be inVoked, 

call_ptr • a pointer (r1lative to the base of the linkaqe 
section) to a link speclfyinq an initialization ~rocedure to be 
invo~e! bY the linker upon first reference to this object 
within a given process, 

!r~-~tr • if unequal "O"b~ this is a pointer (relative to base of 
li~kage sect1on) to a li"k specifY1ng an arqument list ~or 
Tiatching 'call_ptr•, 

, ..... !!., l' h e s y m b o l s e c t i o n 

The symbol section consists of one or more a~m~~l hl~~~a, 
foll::>wed bY an Qhli!..a m1..e.1 which are allocated cont.i~uously 11nd 
threaded (beq1nning with the object map) to form a sinole li~t. 
It terninates with a sin~le 645 word containin~ a Cleft •d1usted) 
19-bit pointer (relative to tha base of the object seqment) 
~ o i n t i n g t o t he ob j e c t llllll p , Thi s Po i l'I t e r m Us t UW.UA co n !'! t i t u t e 
the last word of an object segment. The size (in words) 6£ the 
::>bje:t se~ment is ! quantity which may b@ obtained from the 
~ultics file system, Usina this value, it is possible to loc~te 
tne se~ment•s object map (through this Pointer) which in its turn 
cont~i~s all the information necessary in or~er to identify 11n~ 
a:cess the ~ivers components of the object seqment, Knowledqe of 

·- tl'\e ::>bje:t map is the key to the d.ecodina of al'I object seoment, 
ani the convention hY which the last wor~ points to the ohject 



~ultics stan~ard Ob~ect segment • March 6. 1972 Pacre 18 

Xhe symbol section contains a significant numher of veriahle 
length c~aracter strinqs whieh ahould he directly accessible, but 
~hie~ (f:::>r the Sake of economy) should PreferahlY be store~ in 
Packad format, In order to achieve such storaqe orqa~iiati~n, 
stri~~s ~itoin the symbol section maY be poi"ted to bY ~ at~in~ 
~.~1.ll.U.t..• w o i ch con t a i n s b o t h of f s e t a n ~ l e n Q t h o f t he st r i n g i n 
t>acked f:::>r:n, 

~eclare 1 stringpointer ali~ne~, (NEW) 
i offset b1t(18) unaliqna~, 
2 l~nqth bit(18) unaliana~; 

~here :::>f fset is a pointer (relative to the base of the symhol 
block) to the first character of the aliqned strinq, and len~th 
is a (fixe~ binarY(17)) positive integer representinq the lenqth 
:::>f the string· in- characters, This representation ello~s eBSV 
!Ccess t~ the string bY using the PL/1 built in functibns 
'a1drel', 'fixedf and 'substr•. In the followin~ descriDtion, we 
snall usa the notation 'stringpo!nter' to denote such a DointerJ 
! str1ng~ointer is null if its value is all zero. 

, .... ~ ..... 1. r h e ::> b j e c: t M a p ( N E ~ ) 

rne ob1ect map is a fixed length structure resi!inq at the ....,; 
vary end of the object segment. It contains all the neeessarv 
stru:tural 1nformat1on pertainin~ to the object seqment. 

1ecl1re 1 object_map basad(p), 
2 decl_vers fixea bin, 
2 1~entifier char(B) a11;ned, 
2 text~~ffset bitC18) unalignei, 
2 text_lanoth bitC18) un1li9nei, 
2 definition_offaet bit<1B) unaligned, 
2 definition_len;th b!t(1B) unaliQntd1 
2 linkage_offset bit(18) unali;nea, 
2 link~ge_length bit(18, unaligned, 
2 symhOl_offset bit[18) unali~ned, 
2 symbo1_1en;th bitf 18) unaligned• 
2 first_blOck b!t(18) unaligne~. 
2 11 um be C' _of __ bloc Its bit ( 1 8 > u n a 11 Q n a I! , 
2 format ali;nedl 

3 boUnd bitC1) unaligned, 
3 relocatable bit(1, unaligned. 
3 procedure bit(1) unaligned, 
3 unused bit(15) unali;ned, 

2 map_Ptr bit(18) alignedJ 

ie:l_~ers - a constant designating the format of this structureJ 
whenev~r the structure is modifiei. so is this constant, 
!llo~ing system tOole to easilY differentiate between several 



,-
~ultics Standard Ob~ect sa;mint • March 6, 1972 

in:o]P!tible Vers~ons of a sin9le structure. 

i~entifiar .. must be the constant "obj_map". 

t e x t _.o ff s e t - offset ( r e 1 at i v e t o t he b !\ s e o f t h e o b i e c t s P q me n t ) 
of the text section, 

text_len;th ~a fixed binarry(17) positive inteQer represent1na 
the length in ~ords of the text section. 

:1 e f i n i t i o n _.off s ~ t .. a n a l c1 go us t o t e x t _.of f s Et t 

5efinition_len~th .. analogous to text_lenath 

linksge_of fset ~ an~logous to text_offset 

linksge_langth " an~loqous to taxt_len~th 

s y mb ~l-.o ff set ... analo qo us. to t@xt _.offset 

s y m b o l _.l an gt h "' anal. o go u s t o text _.l en gt h 

first_block - Pointer (relative to the base "f the svmhol 
se:tion) to the most recent symbol blOck. An object seqment ~av 
have one or more symbol blocks which are threaded on a list in 
reverse chronoloQ1ca1 order <1,a., newest block is first on the 
list), 

number_of_~lockS ~this is a (fixed binaryC17)) positive inte~er 
1isplaring t~e number of symbo1 blocks within this symbol 
se:tion. 

relo:atable = "1"b ·> this object segment has 
informatiol'\ in its U~at. symbol block, 

relocation 

proced~re ~ "1"b -> this is an executable object pr0Qram1 
"0"b -> this is a data base. 

~ap_ptr • this 1~ a Pointer, relative to the base of the object 
se;ment, to t~e object map; as mentioned before, this item muat 
resi~e in the last ~or3 of the object seqment, 

~ .... ~ .... 2.., Th ·a s y m b o l Block Header C NI w ) 

Xhe symbol block has two main functions, a) to document the 
circ~mstances Under which the object w~s created, ana b) se~ve 
as a repository for information which aoes not belonq in any of 
the oth~r tnree sections (e.g,, relocation infor~ati;n, 

,.,- compiler· s svrnbOl tree etic,). 1'ha symbol section must contain at 
least one symbOl block, ~escr~.bing the creation circu~stances of 



~ultics St!niard Ob~ect Segment • March 6, 1972 Pa~e 20 

the obje:t segment, A symbol section maY also contain more than a 
single symbol block, for example in the case of a boun~ object, 
where in aiditiOn to the symbol block describinq the object's 
:reati~n bY the binder, there is also a svmhol block for each of 
the :omponent objects, The symbol section is designed s~ that 
symbol blocks ~~Y be ~ynamicallY appended to, or deleted from it, 
such as in the case of the dabu~ger which allocates it~elf a 
symbol block in order to store in it breakDoint information, !he 
size and structure Of a symbol block are variable, dePendina uoon 
their Purpose, All symbol blocks have a standard fixed for~at 
header, is follows, 

iecl!re 1 symhOl_block_haader based(p) aligned, 
2 ctec1Tvers fixed bin, 
2 identifier char(B) aligned, 
2 gen_vers1on_number fixed bin, 
2 gen_creati~n_tima fixed bin(71), 
2 object~creation_time fixed bin(71), 
2 gen~rator charf B) aligned. 
2 gen_vers1on_name stringpointer, 
2 usar1d stri"gpointer, 
2 comm~nt ltrin;pointer, 
2 textTboundary bit(18) unalioned, 
2 statTboundary bitf 18) unalivnea, 
2 source_m~p bitf 18) unali;na41 
2 areaTpointar bit(18) unaligned, 
2 sect1onb~se_backpo1nter bitC18) unal1qned~ 
2 blook_s1ze b1t{18) unaligned• 
2 next~b~ock_thraad bitf 18) unalianed1 
2 rei_text b1t(18) unaligned. 
2 rel_ae~ bit(18) unaligned, 
2 rel_link b1t(18) unaligned, 
2 rel_symbol bit(10) unaligned• 
2 defaUlt_truncate bit(18) unalianed, 
2 optiona1~truncata bitC18) unaliqnadJ 

1ecl_vers ~ a const~nt de1i;nating the format of this structureJ 
whenever the structure is modifie!, so is this consta"t, 
allowing system tools to easilY differentiate between several 
in:o~P!tible ~ersions of a single structure. 

1~entifier ~ svmbo11c coae to define the purpose of this svmbol 
bl~c~, It maY assume one of the fol1ow1n; values, 

"sY~btree" ~> co~pilar symbol tree 
"bir\d_.map" _> bind rnaP 
"~bbreak" ~> aebua breakpoint information 

~en_vers1on_number ~ a positive integer desi~natln~ the version 
of the generator which was used in compllinq this object 
pr~gram, Xhe Policy re;ardino this version number is t~at 
whenever a 9enerator is substantiallY modified~ such as the 
~d~iti~n of new capabilities or the qeneration of new object 



--

~ultics Stan5ard Object Segment • March 6, 1972 Paae 21 

:oie Patterns, th~s number has to be incremented bv one. It i~ 
used nainly bY system tools which sometimes have to oP 
co;nizant of the co~a generation Peculiarities of a qiven 
conpiler, 

;en_:reation_time - a calendar clock rea~i"g specifvinq the 
iateltime at Which this generator was created. 

:>bje:t_.creation_tj,me - a calenaar clock reading specifvino thf> 
iateltime at Wh~ch this symbol block was ;eneratPd. 

;enerator • symbo~ic code definin; the Processor which generated 
this symbol hlock, It mat assume one of the values in the 
followin~ list (which is sub~ect to change or ax~ansion), 

"alm'' 
"pl 1" 
"f::>rtran'' 
"bird.er" 
"deb1,HJ" 

;en_version_nam~ ~ the generatc~r·s version in directly Printable 
character str1ng form, auch as, 

"PL/1 :omPiler Version 7.3 of Wednes~aY, Julv 28, 1911" 

this stri"; 1s disp1av1d by various system toois. The C!nte~ar 
part of the) Vers,on number imbedded in the strinG must be 
identi:al witk the number stored in •qan_version_number•; the 
option!l fract,on as displayed above (7,3) is a4ded in 
in:rements of (,1) whenever (for reasons such as fixed bu~s or 
minor improvements) e qenerator is installed which 4oes not 
diff ar in any signif lcant way from other generators ~f that 
version. It 1s mandatory that the generator name be UP!ated 
whenever the 9enerator ls 1nstalled for Public use. 

userid " the st~ndard Multics identifier of the 11ser in behalf of 
~bom this symbol ~lock ~as created. 

:omment • it iS sometimes desirable to Put certain factual 
informstion concernin; the generator (e,g., certain code 
qe~eration peculi~rities) df perhaps the actual Drocess of 
obje:t program generation (e.g., warn1nq about non fatal arr~rs 
en:ountere~ aur1n9 compilation, or warning concernin; certain 
iefaults aPP11ed ~Y the generator) into the ob;ect segment. rhe 
conment is diSplaYe~ by certain system tools, and ~av be of 
special interest, for example, when a deeiaien ha• to be m~de 
concerning the sUitebility of a given object segment for 
of fi:ial inst~llation in the system libraries, 

text_~~undarY for specialized pro;rams, it 
ne:essary that the taxt section beqin on 
boun~ary Ce,q., o m:>o 64 address); this is an 

is sometimes 
a predeterminea 
integer which 



~ultics Stan~ard Ob~ect Segment • March 6, 1972 Paqe 22 

iefines this boUniary. Its ~efault value. is 2 (0 mo~ 2 
a1.Bress). 

stat_poundarY - same as taxt_boundary, for internal static. rt~ 
1efault value is i. 

sour:e_map " a Pointer (relative to the base of the sY~bol block) 
to a source_map ~tructure <see 2;4,3) aefining the P~thnames of 
the so~r:::e fiies, If no source map is providea, this Pointer 
is reset to "U"b. 

area_pointer • Po~nter (relative to the base of the sYmbol hlocK) 
to the actual symbol block information (e.~ •• sy~bol tree., btn~ 
ma;i et:::,), 

se:tionb!se_bacKpointer • pointer <relative to base of symhol 
bloc~) to base of symbol section, This 1s a neoative quantitv, 

bl,cl size • a (f~xea binary[17)) inte~er value rePresentino the 
size of the sY~bol block (including header) in words, 

n a x t _.bl o:::: k _.t I\ re~ d "' t tire a a < re 1 at iv e to base of s Y m b o 1 section ) 
to next symbol blOcK. 

rel_taxt ~ pointer (relative to base of sYmhol block) t6 text 
se:tion reloc~tion information. as defined below, 

rel_ief ... pointer (relative to the base of the syml'lol block) to 
3ef1n1tion section relocatio~ information, 

rel_link "' ~ointer (relative t6 base of symbol bloek) to liftkaqe 
se:tio~ relocation information. 

rel_synbol ~ Po1nter (relative to base of symbol block) to aymhol 
se:tion relocation information. 

jefa~lt_truncate ~ Offset (relative to base of symbol block) 
starting from which the binder systematicallv truncates cofttrol 
informstion (such as ralo~ation bits) from aYmbol section, 
while still maint~inin9 such information as the symbol tree. 

::> p t 1 ::> n al _.t r u n cat e "' offset C rel at 1 v e to b a s e of s y m b o 1 block ) 
st!rting from wnich the binder mav o~tionallv truncate 
non-essential parts of the symbol tree in order to achieve 
~axi~u~ re~uetion in size of bound object seqment, 

l.L.!i .... l .. 'l'h.e Source Map 

Xhe source m~p is a structure defining the source segments 
used t~ :>riginate this object gagment, as follows, 

ie:lare 1 source_map ali~ned based(p), 
2 decl~vers fixe~ bin, 



.. 
~ultics standard Object Segment " March 6, 1972 

2 size fixed ~in, 
2 map(size~ aliqned. 

3 pathname stringpointer, 
3 uiC1 fiXel bin, 
3 dtm fixea bln(71)J 

Pa"e 23 

i e cl _.vars ... a constant de! sign at in g the form! t of this st r u ct u !':' e; 
~henever the structure is modifiei, so is this constant, 
allowin; system tools to easilY differentiate between several 
in:o~Patible vers1ons of a s!nqle structure, 

size - the number of entries in the "maP" arrav (i,e., number of 
source files definea in this structure>. 

?ath~ane a str1ngpointer specifying the £u11 Pathname 
(treensme) of the source segment. 

~i~ • the unique identifier of the source segment's branch at 
co:npile time. 

itm ~ the iate.ttme modifiei from the source seoment•s branch, 

'-.-..!!. .... !!.. l' l'le Relocation Information 

,-. l'he relocation information aesi;nates all instenees of 
relative a~dressing within a given section of the object se;ment, 
so ~s to enable the relocatio~ of such a section (as in the case 
'f hiniing), A Variable length Prefix coding schema is used. 
where there i& a logical relocation item for each halfword ol a 
~iven section, If the halfwori is an absolute value <non 
relo:atable) tnat item is e single bit whose value is zero. 
'tharwise, tne 1tem is a string of either 5 or 15 bits vhose 
first blt is ·set to "1"bw rhe relocation informat!oft is 
:onc!tenated to form a single string which may onlY be acces~ad 
sequenti~llYI 1f the next bit is a zero, it is a ainale~bit 
absolute relocation item, otherwise it is either a 5 or a 15 bit 
item depeniing ~~on the relocation codes as !e£1ned below. 

There are four distinct blocks of relocation informatibn, 
one for each of the four object seqment sectional text, 
~efi~iti'n' linkage and symbol; these relocation blocks are 
K: n :> w n. !! s • rel_ text • , • r al _def• , • re 1 _link' and ., rel _s v m b o l • , 
:orraspondingly, -

rhe relocation blocks reside within tna symbol block of the 
~enerator which-~roduced the object segment, The corresoon~a"ce 
between the relocation items and the halfwor~s in a Qiven section 
1s m!de by matchinq the sequence of items with a sequence of 
h!lf ~ords, from left to right and from wor~ to wora bY increasinQ 
value of ajdress. 



~ult1cs stanaard Object segment • March 6, 1972 Page 24 

rne relocation block Pointed to from the symbol block hea~er 
(e.g., rel_~ext~ is structured as follows, 

~eclare 1 relinfo baaed(p), 
2 iecl_vats fixed bin, 
i n_bits fixed bin, 
2 relbits bit<n_bits) alianed1 

iecl vers ~ a constant designating the format of this structure; 
wh;~ever the st~ucture ts modifie~, so is thi~ oonstaMt, 
~llow1n; system tools to easilY differentiate between ~everal 
in:o~Pstible vers1ons of a single structure, 

n_~its • the size of the atrina of relocation hits. 

relbits • the packed string of relocation bits. 

Following is a tabulation of the possible codes and thPir 
corresponding re1oc~tion types, 

"O"b ~> ~bsolute 
"10000"b -> Text 
"10001~b -> Negative rext 
"10010~b •> Link 18 
"10011~b -> Negative tink 18 
"10100"b •> Link 15 
"10101"b ~> Definition 
"10110:b w) Symbol 
"10111"b •> Negative symbol 
"11000"b •> Internal storage 18 (NEW) 
"11001"b •> Internal storage 15 (N!W) 
"11010~b •> Self ~elative 
"11011"b •> unused 
"11100"e ·> unused 
"11101~b ~> unused 
"11110"b -> gxpanded Absolute (NEW) 
"11111:b •> Escape 

~bsolute • do not relocate 

rext ~ use text section relocation counter 

Ne;ative rext ~ use text section relocation eounter, The reason 
for having ~1St1nct reloca~1on codes for ne;ative quantities is 
thst s~ec1al co~ing miqnt have to be used in order to convert 
the 19~bit tield in question into its correct fixed binarv 
f.orm. 

Link 18 - use 11nka9e section relocation counter on the ent{rP 
18-bit nalfwor~, This, as well as the Ne;ative Link 18 and the 
Li~k 15 relocation =odes aPPlY onlY to the array of links in 
the linkaqe 'section (i,e., by definition, usage of thes@ 
relo:ation codes 1m?lies external reference through a link), 



.-
~ultics Standard Ob,ect Segment " March 6, 1972 Pa(le 25 

~egative Link 1s ~ same as above 

Link 15 •·use l1nkaQe section relocation count~r on thp low or~er 
15•bits of t~e halfword, This relocation co~e m!Y onlY te Used 
in conjunction with a 6~5 instruction featuring a has@/offget 
adiress field. 

Definition " indicated that the halfword contains an address 
which is r~lat!ve to the base of the definition section. 

Synbol - use symbol section relocation counter. 

~egative Symbol ~ s~me as ab~v~ 

Internal Storage 18 " use internal storage relocation counter on 
the entire 18·b~t halfword. 

internal storaqe is " use internal storage relocation counter on 
the lo~ order 15•bits of the halfwor~. 

!xpanded Absolute • it has bee~ establilhad that a major Dart of 
an ~b~ect program has the absolute relocation code; for 
effi:1encY re~sons, the expanded absolute code allows the 
~efinition of a block of absolutely relocated halfwords. ?he 5 
bits of relocation code are immediately followe~ by a fixed 
length 10•bit f1eld which is a (fixed binarY(10)) Doaitive 
co~nt of the number of contiguous nalfworas all havin~ an 
~bsoluta reloca~ion, !videntlY• usao• of the exPanded absolute 
co~e c'n be ~conomicallY justified only if the number of 
contig~ous abloluta halfwords exceeds 4. 

escape • reservea for possible future use. 

Fi~ure~3 illustrates the oveta1l structure ot the symbol section. 

'-..J!. ... ~ .• 'l'l\'e PL/1 Symbol Block 

ro BE SUPPLIP.:0 

, .... !! .... ~.. '1' he ALM symbol. Block 

ro BE: SUPPLIED 

Z. .... !! .... Z .• 'l'l\e Bind~r· s Symbol Block 

l'he bil":!er·s s:rmbol block contains tne b.in.4 m1.11~ deseribin" 
the rel~cation· values assi;fta! to tne various sections of the 

~- bouni :onponent object segmente. the blOck c~nsists of a variable 
len~th structure, followed bY an area in which variable len~th 



~ultics Stanaard Object Segment ~ March 6, 1972 Pa~e 26 

symbolic information is stored, The format of the hina~a~ 
stru:tura is, 

jecl!re 1 bindmap base.d(p) aligned, 
2 decl_vers fixed bin, 
2 n_com~onents fixed bin, 
2 component(n_compoaents) al1Qned, 

3 name stringpointer, 
3 generator_name char(8) aligne~, 
3 text_start blt(18) unaligned, 
3 text_1en;th bitf 18) unaligned• 
3 st~t_start blt(18) unaligned, 
3 st~t_length bit(18) unalioned, 
3 symh_start bit(18' unali;fttd, 
3 symb_length bit[18) unalioned, 
3 defblock_ptr blt(18) unaliQne~; 

iecl_Jers ~ a constant designating the format of this structure; 
whenever the structure is ~odif ied, s~ is this constant, 
allowing system tools to aasilY differentiate between several 
in:o~P\tible Yers1ons of a sinqle structure, 

n_~onponants - number of component objects bound withi" this 
bo~ni segment. 

:onponent - var1able length arraY featurinq one entrv per bonnd 
:onponent object segment, 

name - Pointer to the symbolic ~ame of the bou"d com~onent. this 
is tha name ~ftder wnich the component object was 14antifiad 
within the archive file used as the binder's input (i,a., the 
nane :orresoOnding to the object's 'objectname' entrv in the 
bindfite), The stringpointer is relative to the base of the 
b1ndna~ structure, 

~enerator_name - ~he n&me of the qenerator which create~ this 
conponent object segment, 

text_~tart • (£1xed binary(17)) inteqer value of the comgonent•s 
text section relocation counte~, 

text_len~th • (fixed binary(17)) integer value of the comoonent•s 
text section's lenqth. 

stat_~tart - relocation counter for comPonent•s internal static. 

stat_lenJth - length of component's internal static, 

sy~b-•tart - relocation counter for comPonent•s symbol section. 

symb_le~;th - 1ength of component's symbol section. 



.. 

-
~ultics Stan~ard Object segment • March 6, 1972 !'aqe 27 

iefblo:k_ptr - 1£ non-zero, this is a ~ointer (relative to the 
base ~f the definition section) to the comPonent•s definition 
blJck (first c1ass~3 seqnama defiAit1on of th~t co~Ponent"s 
~efin1t.ion blOck), 

r:> Be: SUE'PLIED 



~ultics Standard Ob~ect sa9mant • March 6, 1972 

Xh1S section ~e~cribes those ~arts of the generated Code 
(oth~r than the structural parts discussed in section 2) which 
have to conform to a systemwide standard because thev interf ~ce 
with syste~ tools sUch as the ~inder, the ~efault error han~l?.r, 

iebu; et::. 

l~.1. rhe ?ext SeCtj,on 

T~e teKt section contains a number of sequences vhere it is 
idvanta;eous to h~ve all generators produce identical code 
~atterns, such as the call, save and return s~quences. For the 
~urp~se ~f this aocumant, however, only the entry se~uence ~nn 
the 1enerated re1oc~tion co~es are of interest, 

L..1 ... 1., 1'!\8 EntrY Sequence (NEW) 

The entry sequence must fulfil two requirements, a) that at 
the location precadin9 the entrypoint Ci,e,, CentrYPoint•1)) 
there is a left adjusted 1e~bit relative pointer to the 
1afi~iti~n of that entrypoint (within the definition section), 
ini b) that the save sequence executed within that entrypo{nt 
store an ITS pointer to tnat entrypoint at spl22 so that bY 
inspecti~g the. proced~re•s current stack frame ene mlY determine 
the id~rea3 of the entrypoint at which it was invoked, and then 
reco~str~ct that entry's symbolic "&me through use of its 
iefinition pointer, 

J. ... 1 .... z. .• T!\e aeloCation Codas CN!W) 

the follow1ng list defines the on1Y relocation codes which 
~aY be generated 1n conjunction with the text section, and tken 
onlY wit~in the scope of the restrictions specified, 

~bsolute • no restriction 

reKt • no restriction 

~e~ative ~ext • no restriction 

Link 19 - may onlY be a direct (i,e,, unindexed) reference to a 
link, 

Link 15 - may only appear within the address field of a 
Cb!Sa/offset) ty~P. instruction (bit29•"1"b). The instruction 
nust not be tndexe~~ an~ must not contai~ a "10"b tm 
no11fier. ~lS01 the followin~ instruction codes may not h!V@ 

.. 



. . 

.-· this relocation code, 

srBA c~sns 
sreo C!>52)~ 
srcA usns 
srco c?s2)~ 

PaCJe 29 

titl&.; th a peculiar restrict 1 on s 1 mp o s e :l u Pon the 1 ink - 1 5 3. n rl 
int•15 ralocat~on Codes stem from the fact that these relocation 
:oies aP~lY to base/offset type address fields encountPred in ~he 
!dlress portion of macnine in1truct1ons1 the effective value of 
such an address is comrutad by the har~ware at execute ti~e. To 
that en~, cert a1n nar d ware rest r 1 ct ions a re i mpo!=!ed on s itch 
instru:tions. When the Mu1tics Binder ~rocesses these 
instru:tions, ~t often resolves them into s1mp1e•address for~at 
and t\aS to further modify information in the OP•code (ri~ht hand) 
~ortion of tne instruction word. Therefore, these relocation 
:odes ~ust onlv-be specified in a context which is com~rehensihle 
to t~~ 6~5 control unit, 

Definition • no restriction 

synbol • no r~str1ction 

Internal Stor~~e ~a ~ no restriction 

Internal Storage 15 - maY on1Y appear within the address field 
~f a (ba~e/o~fset) type instruction Cbit29•"1"b), rhe 
instruction m~st not contain a "10"b tm modifier~ however it 
nay be indexed. The instructio" codes exeladed from the 
Link •·15 relocat1o n may also ba used, 

Self Relative • no restriction 

Ex~anded Absolute • no restriction 

l.L.2. .• rne Definition Section 

rnere are no relocation codes associated with the definition 
section, Item ~rel_jef' in the symbol block header has beeft 
pr~vided for the sake of com~leteness and may be used in the 
future. 

l.&..'-a.1.. Il\Plicit Definitions (Nf~~) 

All qenerated ohject segments must feature the followinq 
,,,,..... i:nPlicit iefinition, 



~ultics stan~ard Object segment • Maren 6, 1972 Pacre 30 

"symbol_table: ~ ~efining the base of the symhol hlock 
'enerated by the current language Processor, relative to the 
base of the symbol section. 

A:lditionally, objects created bY the binder havP. the 
i:nplicit :lefin1t1on ''bind_map" which Points to the base of the 
sy~b~l block generate~ by the hin~er, relative to the base of the 
sy'.l!b::>l section, 

~~,l.. r he Lin k age sect 1 on 

?he linka~e section consists of four distinct hlocks: the 
linkage section header, the internal storage, the links and the 
first reference traps •• rhe format and value of the linkaqe 
section h~ader ~re as defined in section (2,3,1), 

~ ... 41., 'r t\ 'a Inter n al. s tor a 11 e 

rne intern~l storage 1s a 
internal static storage class. 
even tho~gh acc~ss to the linkage 
it may n~t cont~in an1 executable 

rext ~ no restr~cti~ns 

repos1tory for items of the 
It mar contain data items onlY: 
section is of the •raw• tYoe, 
code, 

rhe link ~rea may only contain an arraY of links aa daf ined 
in secti~n (2,3,3), rhe links must be considered as distinct 
~nrelate! items, an~ no structure (e,;., array) of links may be 
assunei, rheY ~ust be accessed explicitly and ind!viduallY 
tnro~gh an unin~exed internal reference featuring the Link~18 or 
t h e Li n k "'·1 5 rel o cat 1 o n c o de s ~ 

l.~ .... l.. 'rne Relocation Co:las tNEW) 

Only the 11nka9e section heade~ and the links ~av have 
relo:ati~n codes ass~ciatea with them (the internal storaae area 
has !sso:iated With it ~ single Expanded Absolute relocation 
:Ltem). 

~bsolute - no restriction; mandatory for the internal stor~oe 
!rea. 



,-

--· 

~Qltics Staniard Object Saqmfnt e March 6, 1972 Paqe 31 

Link 18 • no restriction 

Ne~ative LinK 18 • no restriction 

Definition - no restriction 

Internal Stor~ge 18 • no restriction 

EX~ande~ Absolute - no restriction 

l. ... ~ .• :rhe symbol sectiori. 

T~e symbol section may contain infor~ation related to s6me 
'ther section csuch as a sYmbo1 tree defininq relative offsets of 
symbolic items), and therefore maY have relocation co~es 
asso:iated with it. 

~bsolute • no restriction 

reKt • no restriction 

Link 1S • no restriction 

Definition - no restriction 

synb'l • no r~str1ction 

~e~ativa symb01 • no re1triction 

Internal Stor~oe JS • no restriction 

set£ aaiative • no restriction 

EX~and!d Absolute - no restriction 



~ultics stan1ard Ob,e:t saqment ~ March 6. 1972 

T~is section briefly dagcribes a number of the objpct 
se1ment·s functional interfaces in order to give the reader s~me 
i~ea as to how certain structures an~ formats. describe~ in 
sections (2, 3) are usea, Also, a list of stsndard svstem to61s 
is proviied in order to allow a subsyste~ or compiler writer to 
!C~U!int himself with existing facilities on Multics. 

~...l. Dynamic LiOk1n9 

one of tne basic Principles of Multics is that information 
is alwaYs accessed by its symbolic file svstem name. and that 
segments are asSiqnea a machine address Ci,a,. segment number) at 
t~e nonent of execution onlY• It follows that any inteF•seqm~nt 
reference must be resolvaa Prior to its execution into ' machine 
s~~ress which ii a priori unknown, Certain computer systems 
require that such address resolution he Derforme~, orior to 
exec~tion, by a process commonly known as "loading"• which maY be 
tnou;nt ~f as a "PoSt•compilation" in vnich several indePendentlv 
:omp1led procedures are assembled into a single procedure in 
wnicn !ll prav~ous symbolic inter•Proca~ure references are 
:onverte~ into 1nternal relative addresses, 

In ~ultics, such loa!inG is unnecessary because the ayna~ic 
linkin~ machan1sm ~llows symbolic ref ereneas to be evaluate! and 
resolved whenever theY are encountered !uring execution, ~ 
~a r o 11 a re re Q 1st er , It n ow n as t h e U.n.t.U a. QJU.11lar. ( 1 p ) is a 1 w a y s 
set to P~int to the base of the currently executing procedure•s 
linkage section. All references to external symbols are made in 
the form (lPln~~> where ~ is a relative offset within that 
?roced~re•s l~nkaqe section, and notation •,•• in!icates 
1n1ire:tion Ci.e,, address substitution), Location (1Pln) 
:ont1ins an unsnappe~ link, as defined in section (2,3,3), which 
features a linkfault (46)9 tag, When the processor attem~ts to 
execute the inairection and recoqnizes the fault taq (46)8, 
exec~tion is interrupted and the processor faults Cit@•• forces 
:ontrol) to the Multics li.D.UC. .• 

[.~.llJ I:oi the following description 
reference is ma~e to items defined in 
2.2.~ and 2.3,3, rne reader may wish 
illustrates the structure of a link, 

of the linking mec~anigm, 
sections 2.2.2, 2.2.3, 

to con~ult Figure~2 wnich 

The linker's only input is a pointer to the unsnaPPe! link 
~nich initiate~ tne linka;e fault. By using the link's 
'heaier_pointer· the linker is able to Calculate the ad1ress of 
the lin~a~e section header which in turn contains in its fi~st 

. ' 



.. .' 

.-
~ultics Standard Ob~ect S19ment ~ March 6, 1972 '.Pa".le 33 

two ~ords an ITS pointer to the object seqment's definition 
sa:tion (this pointer is 1et when the procedure is referen~e1 for 
the first time, as 1s explained below), 

Let us na~e the pointer to tne definition section ~ef~; th~ 
s~iress :alculation 

addrel(defp, axpresston_ptr) 

Prod~ces a Po1nter to tne link's excression wor~. Given ~ 
Pointer to the expression word, the address calculation 

~ddrel(dafp, typa_pa1r_ptr) 

prod~cea a pointer to the link~1 type~Pair, whereupon in t~rn 
!diress :alculations 

addral(defp, entryna~e_rtr) 

Yieli pointers to the r1spectiYe 'ace' strin~s which define thP. 
externil symbol, 

the linker first interrogates the 'trap_ptr• item in the 
link's type•Pa1r, and if that item's value is unequal to "0"b 
then the linker effects a call to ClPICtraP-Ptr),*), a call which 
in turn maY provoke a linkage fault (in ~ultica, !ynamic 1inKin~ 
nay be recursive), 

If the ~trap_ptr' is null (or upon r1turn from the tra~ 
Proced~ra) the· linker proceeds to Obtain a Pointer to the 
refe~enced object seQment. ror link types 1 an5 5 
<selfreferencing links) this 11 a Pointer to the referencin~ 
Procedura. ror l~nk type1 3 and 4 the Pointer i• obtained bv 
:allin; the MUltics file system with the 1Ymbolic •se;mentna~e· 
Portion ~f the external symbol. rhe linker is now in possession 
of t~e ssgment number portion EagL for the referenced symbol. 

rne linker also obtains from the file system a value l~~~th 
which is the length (in words) of the referenced object seoment. 
By c~nvention, C~•~it~"1) is the offset within the object se~ment 
of a p~inter to the object map, which contains the off set of the 
reference1 object's definition section. The linker com~utes a 
Pointer to the target aefinition section, searches it, and 
l~:ates the definition for 'entrypoint' which desiqnates the 
~1.f.AU. of that symbol within the object se<Jment. Goine baclt to 
the lin~·s exPressi~n ~ord, tne linKer performs the coMoutation 
(lifi.1..t..+express1on) to obtain the final relative address portion 
~£ the referenced symbol, It no~ inserts values a~~! aftd ~ffsat 
into the corresPond1n; 'haaaer_pointer• and •expression_Dtr• of 
the unsnapped link, changes the link's ta~ to (U3)8 a"d thu~ 
:~nverts the original unsna~ped link into a valid (executable) 



~ultics Standard Object segment - March 6, 1972 Pa~e 34 

rrs pointer, wnereu~on the referencin9 proce~urets e~ecuti~n i~ 
rasu~ei !t the Point of interruption. 

BY :onvert1ng the original linkfault into an rrs Pointer it 
is !ssurei tnat Only the very first reference to ~n ext~r~Rl 
sy~b~l will invoke the ~Ynamic lin~inq mecnaris~. and thP. 
asso:i!tas cost of linkin;, Future references to (lPln,*l will b~ 
iire:tlY executed. 

BY ief inition, an executable object seQrnent is P 1:re 
<non·selfmodify1n9l procaaure anj may not be ~ltere~. As we ~~ve 
seen, the process of ~ynamic linkinq re~uires that an unsnapnP.1 
link be overwritten with an Irs pointer; also, that ITS ~oln~er 
:ont!ins a ~i~! which may assume ~ifferent values ~ependino u~on 

the cir:unstances under which linkinq took Place, ThereforP., 
~henever the linker attempts to link to an objP.ct segment w~ir.h 
h!S never before been referenced within that Multics ~roces,, i~ 
initiates that segment (i,e,, requests the file svste~ to ~~ke 
the seg~ent ~nown within that Multics ~recess under some sa7!l 
!n1 :o,1es its entire linka;a section into a writable datab~se 
~now~ as the 'QmA~Ead 11.A&.a.su. ~~ti~. ?he (lpl reQister will 
!lways point to tne linkage section copr, ani it is t~is c;py 
wnic~ is moditied 1ur1n; the procedure's execution. The ~rocess 
'f cJPYing 1nc1U1es the appropriate settinq ef the 
·iefinition_ptr~ (words 0&1), ·11nk1;e_otr• and 'object_seQ' 
items in the coPied link!;e section heaier. 

It is sometimes iesirable to reverse tne ~rocess of dYna~ic 
linkin~ (unsnaP a link) and restore the oriQinal linkfa~lt 
inform!tion, Given an offset n to a link in the combine1 11n~!Qe 
se=tio~, unsnapping is trivially achieved by locatino ~he 
'rigin!l linkaQe section in the object seqment throuqh the 
·11n~a~e_ptr• 1tem in the eo~ied linkaqe section hea~er, an~ bv 
'verJritin; the snaPPed link with its oriqinal value found at 

addral(linka;e_ptr, ~) 

fiJU~e-~ is a flow Chart illustrating the OV@rall logic of the 
linker, 

• • 
' -



~ultics St~n!ard Ob~ect Segment - March 6, 1972 Pacre 35 

orn!mic linking is a vary useful and Powerful caPabilitv; it 
Provides tha casual user with the convenience ~f not havinq to 
explicitly assemble all of the mo~ules related to his proqram ~na 
"loai" t~~~ before being able to execute it, Bather, he needs 
only to be concerned with specific mo!Ules which are of inter~st 
to him, leaving it Up to Multics to locate and link to all other 
Tioiules ~hich may be eithar hi~ own, or perhaps lihrarv Procedure 
~rovided as standard tools, Moreover, ne nee! not even be aw~re 
of certain modules Which are invoked bY the system in his behalf. 

Sometimes, however, a large subsystem whieh bV ri~ht sho~ld 
be coiai as a s1n;le procedure is in effect subdivided into 
iistin:t smaller modules, mostlY for reasons of codina (and 
iebu~qin~) convenience, rhis collection of Procedures mav now be 
exec~ted, and will be interlinked by the dynamic linkina 
nech1nisn~ In this case, however, it is known in advance that 
tnis collection of PhYBicallY distinct Procedures effectivelv 
f~rms a sin;l• 10g1cal unit, The cost of dynamic linkin~, no 
n1tter h~w triv~al 1t may be, will be 1ncurre~ whenever this 
subsrsten is invoked for the first time bY some Multics process. 
supp~se that we have a comPiler named ~comp$comp• Which was co~e~ 
n~iularly in ~ d1stinct modules, eacn of which features an 
!Ver19e ~£ m entrypointSJ further SUPPose that in or!er to 
execute the compiler all afttrypoints must be linked to bY the n 
noiules, rne cost of a single compilation will thus b• inereaged 
by the ~verhead colt of invbklng n*m 11nka;e fault•~ whereas the 
only linkage faUlt that needs to be taken is that of linkln~ to 
'com~Sco~p', all otners bein; internal to th• comPilar and 
unne:ess!rY1 ~n the sense tnat the comPiler•s modularity is a 
convenience to the writer of the compiler but an unnecessary an~ 
expensive pe~altv to the ~aar, 

T~e ~ultic• binder is a "~ost processor" which, ~iven an 
input of ~ ob~ect seQmenta combines and reduces them intb a 
single new 'bouna• object segment, one of the £uncti6ns of 
bindin~ is to reduce all internal interse~ment references from 
linkfaults to r~lativa internal a~dresses, rhua, by bindinQ all 
co~ponents of our com~ile1~, we would produce a new object seqment 
na~ei 'comp$c~mp• whose execution provokes none of the orevibus 
a..•:n. linksge faults. 

Another re~son for bindin~ is that in a paged virtual membrv 
such as ,ultics·, n distinct object segment woul~ incur the extra 
eKpense ~f an average 1/2 a Paga Of lost storaqe per leQ~ant. By 
bindln; nanY component objects (even if they perhaps are onlv 
nar;in!lly related to one another) one may make substantial ~ains 
in stora~e spac~. 

~- BY bindinq several object segments, ~hether related or n~t. 
~ne loses none of the capabilities associate~ with those ohject 



~ultics Stan~ard Object Segment e Ma~ch 6, 1972 Paae 36 

seqmants in th~1r free standing form. The only discernible eff P.ct 
of binding is that the storage requirements of the bound obiect 
segment ire less then the combine~ storaqe requirements of ~11 

the :o~P~nent o~ject segments, and that anv internal inter~e~ment 
references will be Pre"linked automatic&llY. runctionallv1 the 
exec~tion of a collection of bound object seg~ents is Quarant~ed 
to b! identical to the execution of those same object se~ment in 
f ree-standihg form, 

!:l.a..l., IH mi n g c on v e n t 1 o n s 

Multics segments have symbolic names which may be from 1 to 
32 c~ara:ters lOng. By convention, such names maY be co~PoUnd, 
:ons1st1n~ of a concatenation of two or more su~·names where thP. 
point of concat~nat1on is flag~ed bY the insertion of a "•" 
:h.aracter; the number of sub~names within a compoun! na~e is 
linitei onlY by the imposed maximum total lenqth of 32 
:h.3.r1cters. 

It is often desirable to give Bimiliar names to two or more 
lo;i=allY relate~ segments, For example, if we have a seqment 
:ont1ining the symbolic source languaqe of some proqram 'Proa• 
!n1 ~e com~ile 1t to ~ro~uce two more seQments, namely the object 
segment and a se;mant containing a printable listinq of the 
:onpil!tion, we WoUli like to indicate that these two new 
segments ~re 1n effect a aeriviative of 'prog• an~ ~1va t~em 
na~es in which the symbol •proq• is feature~. 

BY :onvent;on, it is always the Object segment vhich is 
~iven t~a primary name 'Prog', All other related segments !re 
given :o~~ound names consisting of tne Primary (first sub•> name 
'pro~· ani one or more standard suffixes, ?hus if the source 
lan;~a;e in our example 11 PL/1, the seqment containino tkat 
sour:e code 1s bY convention named 'Prog,pl1'• and the listino 
se~mant produced by the PL/1 comP1ler iS named ·~ro;,list'. Bv 
usin; t~is systemw1ae convention, we ~aY now invoke the PL/1 
:omPiler bY tyo1ng 

pl1 prog 

!ni the :ompiler Will automatically construct the name 'Proa.Pt1' 
!n1 loc~te th~t segment which it knows bY convention to contain 
the sour:e code for ·~rog', 

!:t .... l!. Standari SYstem rools 

r:> Be: SUPPLIED 

... 




