
MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BG.3.03 PAGE 1

Published: 05/24/67

Identificatton --
Segment Control, The Process Load Module
R. C. Daley, D. M. Ritchie

Purpose -
The process load module of segment control provides the
principal interface between the basic file system and
the other modules of the hard-core supervisor. Primitives
are provided by this module by which a process may be
activated, loaded, unloaded, or deactivated.

Introduction

A process within Multics may be in one of the three following
conditions.

a. inactive
b. active
c. active and loaded

When process is inactive, no entries exist for that process
in any of the wired down data bases in the hard-core supervisor.

A process is active if there is an entry for that process
in the process segment table (PST) and if AST entries
exist for the following segments.

a. The process known segment table (KST)
b. The hard-core supervisor stack
c. The process definitions segment (PDF)

An active process may be either loaded or unloaded. A
process is loaded if the following conditions are met.

a. The process has a loaded hardcore descriptor
segment whose first several pages are wired
down. These pages contain the descriptors for
all wired-down segments.

b. The entire Process Data Segment (see BJ.1.03)
is present in wired-down core.

c. A 11 special segments required by the process
are present in wired-down core.

,,,,......
MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BG.3.03 PAGE 2

d. The descriptor segment for the last non-hardcore
ring in which the process was operating (if any)
is loaded and its first page is wired down. This
page contains the descriptors for segments which
must be accessible in any ring without faults.

To transfer control to a loaded process; it is necessary
only to switch to its hardcore descriptor segment. A
loaded process becomes unloaded when any of the above
conditions are not met.

A process is always activated and unloaded under the control
of another process which is currently loaded. However,
the loading of a process always occurs under the control
of the process being loaded.

Primitives

The following is a list of the primitives provided by
the process load module and is followed by a detailed
d~scription of each primitive. All of these primitives
are privileged to the procedures of the hard-core supervisor.

1. actproc s.
2. deactproc 6.
3. loadproc 7.
4 • 1 oadp roc2

,. acteroc

unloadproc
createseg
killseg

To activate a process which is currently inactive, the
following call is provided.

pstep = actproc (dirname,processid)J

In this call, dirname is the path name of the process
directory of the process to be activated and processid
is the process identification of that process. Open return
from this call, a pointer to the newly created PST entry
for the specified process is returned as the value of
psteQ.

Upon receiving this call, three successive calls are made
to a directory control primitive (estblseg) to fihd the
following segments in the specified process directory
and make them known to the current process.

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BG.3.03 PAGE 3

a. the known segment table (KST)
b. the hardcore ring stack
c. the process definitions segment (PDF)

When directory control finds a requested segment 1 it calls
a segment control primitive (makeknown) to make the segment
known to the current process. Once the above segments
are found and made known in the KST of the current process 1

a utility routine (getastentry) is called to find (or
create if necessary) AST entries for these segments.
Once these AST entries are located1 the AST-entry-hold
counts in the AST entries are incremented by one to insure
that the corresponding segments remain active. Then a
new PST entry is created for the specified process and
linked to the above AST entries and the specified process
is now active. However 1 before returning control to the
calling program1 the KST entries created during the execution
of this call must be deleted by calls to another segment
control primitive (makeunknown). Thus 1 upon normal return
from this call, the KST of the current process appears
as it did before the call to actproc.

2. deactproc

To deactivate an active process 1 the following call is
provided.

call deactproc (pstep);

In this call 1 2.ili.J2 is a pointer to the PST entry defining
the process tooe~aeactivated which cannot be the current
process. Upon receiving this call 1 the AST-entry-hold
counts are decremented by one in each AST entry listed
in the specified PST entry. If the resulting entry-hold
count is zero and the number of pages currently in core
for any of these AST entries is zero 1 a call is made to
a page control primitive (removept) to unload the corresponding
segment. If the number of pages in core is non-zero 1

no action is required as the segment will be unloaded
automatically when the last page is removed due to inactivity.
Before control is returned to the calling program1 the
PST entry for the now inactive process is deleted.

3. lo2dproc

To load a process which is currently active but unloaded 1

the following call is provided.

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BG.3.O3 PAGE 4

call loadproc (pstep);

Again,~ is a pointer to the PST entry defining the
process~e loaded which, in this call, is the current
process. Upon receiving this call, the process is using
a wired-down descriptor segment prepared by the retiring
process. This segment has no DST entry because it was
established via a call to createseg. Loadproc creates
a DST entry for the descriptor segment, which then is
a normal hardcore descriptor segment. Finally a pointer
to the new DST entry is placed In the PST entry for the
process and the DBR value for the descriptor segment is
placed ih the interim Process Data Segment.

Next, this routine makes sure that the process KST has
been initialized by testing whether its entry count is
zero; if the count is zero, the segment control primitive
initialize kst (BG.3.O1) is called. If the KST had to
be initialTzed, the process is new (has never been loaded
before) so its Process Data Segment must be made known
via a call to a directory control primitive (estblseg).

When it is certain that the PDS is known, (whether because
it was just established or because it was discovered that
the process has been loaded before) the PDS is activated
by calling a segment control primitive (getastentry) and
read ihto wired-down' core using a page control primitive
(pcreadseg). Then the PST entry pointer pstep is placed
into the POS.

Once the POS is in core, the PDF (Process Definitions
Segment; see BJ.1.O6) is interrogated to determine whether
any special segments are needed by the process; if so,
they are established, activated and read into wired-down
core, and a collection of pointers to their AST entries
is added to the PST entry for the process as a special
segment list.

4. ,loadproc2

If an unloaded process has been loaded before, and if
when it became unloaded the first page of a non-hardcore
ring descriptor segment was wired down in core, that descriptor
segment must be restored before the process can be considered
completely loaded. The routine invoked by

ca 11 1 oadproc2;

_,,,--......

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BG.3.O3 PAGE 5

checks the Process Data Segment to determine whether a
descriptor segment page for a non-hardcore ring should
be wired down; if so, loadproc2 uses the Ring Register
Simulation Module routine setup ring to create a descriptor
segment for this ring and wire oown its first page.

This routine will disappear if ring register hardware is
fitted to the 645. See BG.3.O5 for a fuller discussion.

5. unloadproc

To completely unload a loaded process, thus rendering the
process active but unloaded, the following call is provided.

call unloadproc (pstep);

Upon receiving this call; the segment-hold count is decremented
by one in the AST entry for the PDS of the process to
be unloaded. If the resulting value of the segment-hold
count is zero, all pages are removed from the wired-down
state by a call to core control. If the specified process
has any special segments wired into core, they are treated
in the same manner as the PDS. Any pages removed from
the wired-down state will remain in core until removed
from disuse.

All AST process trailers for the specified process are
removed from the AST. Finally, any pages or page tables
for any descriptor segments, used by the specified process,
are returned to core control as free storage and the
corresponding DST entries are deleted.

6. createseg

To create a new segment of empty pages (contents all zero)
all of which are wired into core, the following call is
provided. ·

call createseg (size,max1 1 priority 1 descr);

In this call, size is the length of the desired segment
in words, maxi-rs-the maximum size in words and priority
is an integer'from 1 to 10 indicating the priority of
the request (the lower the value the higher the priority).
Upon normal return from this call, a segment descriptor
pointing to the newly created segment is returned as the
value of descr.

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BGo3.03 PAGE 6

Upon receiving this call, the specified priority is translated
into a core "threshold" (see BG.6) to be used in subsequent
calls to core control. Segment control then calls core
control to assign a page table large enough to accommodate
a segment of the specified maximum length. Once the page
table is established, core control is called successively
to obtain as many pages as necessary to provide the specified
segment length. Unused page table entries are then filled
with directed faults and control is returned to the calling
program.

This call is provided to obtain space for a temporary
segment to be used in preparation to loading an unloaded
process. A segment created by this call has no corresponding
file in secondary storage and thus has no corresponding
KST or AST entry.

7. ki 1 lseg

To destroy a segment which has been created by the preceding
call, the following call is provided

call killseg (descr);

In this call, .descr is the segment descriptor of the segment
to be destroyed. Upon receiving this call, the page table
and pages of the specified segment are returned to core
control as free storage.

