
MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BV. 6 PAGE 1

Pub 1i shed : 10 / 18 / 68

Identification

Interpretation of entry counts in stgop_ transfer vector;
coding styles which produce calls to stgop_.
c. Garman

Introduction

Various questions have recently been raised about the
amount of time spent during Multics and 6.36 runs executing
procedures of the EPL run-time support package, especially
the procedures for manipulating long bit and character
st rings.

This document describes how to find out how many times
EPL-compiled code called for various functions, and includes
a section on coding styles which produce such calls, as
well as how better to code them if possible.

The interface procedure stgop_(STrinG OPerations) serves
as a transfer vector to shield the code from changes in
the actual procedures which are eventually invoked.

A recent change in compiler-produced code uses a modified
calling sequence which reduces the number of links generated
per program by putting the transfer through the real link
into one program only, and using an indexed TRA instruction
to dispatch to the ultimate handler.

The calling sequence is

eapap
eaxo
tsbbp

I

argl'ist
subno
<1 ibi,> I [1 ib_J

standard multics arguments
11 number• of procedure

(In 6.36, procedure lib_ is merely a transfer to <stgop...>l[lib_],
in Multics, the segment named stgop_ also has the name Tib_).

The stgop_ di~patcher stores the contents of bp->bb in
spl20 so that the called procedures may effect a standard
return, (since no~ is required the return is directed
to the caller of stgop), adds 1 to the contents of the
location in a vector corresponding to subno and dispatches
into a vector of transfer instructions which in turn transfer
to the appropriate procedures. (The dispatch vector is
shared with the entries used for individual calls to stgop_,
such as EPLBSA procedures which do similar manipulation.)

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BV. 6

Locating s!lS! Interpreting~ Vector

The vector containing the indicated II fan-out" counts is
located at 10(8) in the linkage section for stgop; it

PAGE 2

is currently 42(8) words long, of which for the tTme being
only 0-27(8) should ever be non-zero. (In Multics, stgop_
is part of bound_lib 1_wlred, and its linkage block begins
at 740(8) (currently). The linkage for the bound segment
is itself copied into the combined linkage of each ring:
in ring 0 it is in "wired_sup_linkage", with its base
at 2356(8); and in the ring 1 combined linkage it generally
starts at 3646(8). Thus to find the location of the values
in a given ring's combined linkage, the three numbers
must be added: the base of bound_lib_1_wired's linkage,
the offset of stgop_'s linkage in bound_lib_l, and the
offset of the vector in stgop_).

The order of the values ls:

118

0

1

2

3

4

5

6

7

10

1 1

12

13

14

15

16

name

bsbs_

cscs_

ctbs_

ctcs_

ixbs_

ixcs_

ntbs_

ndbs_

orbs_

eqbs_

eqcs_

nebs_

necs_

lebs_

lees_

function

move bit strings

move char strings

concatenate bit strings

concatenate char strings

index function--bit strings

index function--char strings

not function--bit strings

sag function--bit strings

.Q.C. function--bit strings

compari sons~-bi t st ring =

comparisons--char strings=

comparisons--bit strings~=

compari~ons--char strings-.

comparisons--bit strings<=

comparisons--char strings<=

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BV.6 PAGE 3

1/8

17

20

21

22

23

24

25

26

27

name

gebs_

gees_

ltbs_

ltcs_

gtbs_

gtcs_

ssbs_

sscs_

bsfx_

function

comparisons--bit strings>=

comparisons--char strings>=

comparisons--bit strings<

comparisons--char strings<

comparisons--bit strings>

comparisons--char strings>

compute subscript--bit string

compute subscript--char st~ing

convert bit string to double
precision fixed

Also located in the linkage for stgop_., at 57(8) and 65(8),
are the entry counts for the entry points [lib_] and [stgop_]
respectively (the latter is for a projected compiler change
that will further reduce the overhead of the dispatch
function)1 the sum of these two values should equal the
sum of the values of the elements of the fan-out vector.

These values are also included in the entry sequences
of the individually called routines; however, certain
routines., such as movstr_., are themselves called by other
procedures in the string package., e.g., catstr_., and thus
their indicated entry counts may be higher than those
in the fan-out vector.

Also in the linkage for stgop_ are the entry sequences
for the originally compiled calls: the counts for these
are conveniently located 1 at intervals of 10(8) beginning
at 73(8)., in the same sequence as indicated above for
the dispatch vector.

Coding styles ~bicb produce £trinq-package calls

A. General considerations

Although it is discussed in some detail in the BN sections
on code generation., a brief review of the conditions
under which EPL will produce calls to the runtime string
package is appropriate here:

MULTICS SYSTEM-PROGRAMMERS' Ml\NUAL SECTION BV.6 PAGE 4

1. When the length of one or more of the arguments is

a. greater than 36 bits (or 4 characters)

b. an expression

c. unknown

under (c) ls included string parameters with a'*'
as the length, virtual strings resulting from a call
to cv_string, and references to the substr function
and pseudo-variable.

2. Whenever any variable is a varying string, regardless
of its declared maximum length. Note that the length
function is executed as in-line code; however, when.
the length desired is that of a parameter, care must be
exercised that both the declared formal parameter and
the actual parameter are of the same type, that is,
both varyin~ or both non-varying (otherwise incorrect
execution will likely result). When a parameter may
be either varying or non-varying the lg functions
(BY.10.02) should be invoked instead.

3. Varying string temporaries are created whenever there
is more than one expression in an assignment statement
involving an unknown-length strin~, or a function call
is made with a string expression involving one or more
varying or unknown-length strings. Thus,

fixed_result=varl I fixed;

will not produce a temporary varying string, however

fixed_result=fixedl ladJI I fixed;

will create varying-string temporaries.

(Note that

fixed_result=fixedl lfixedl ladj;

will also produce varying temporaries where

fixed_result=(fixedl lfixed)I ladj;

will not).

Likewise

call zorch (fixed! ladj);

produces varying string temporaries.

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BV.6 PAGE 5

B. Specific Examples.

1. Testing for a null character string. The sequence

i f st r1 ng = 11 " then ...
is better stated

if length(string) = 0 then • 0 •

2. Moving the first part of a string into another string:

3.

string_1 = substr(string., 1., 1);

where string_1 is of length 1., results in two calls
to the string package: one to compute the substring.,
and one to perform the actual movement (No.,
Virginia., substr-s are never done in-line).

An entirely equivalent result is obtained by:

string_1 = string;

which results in at most 1 cal 1 to the string
package. (The assignment is done in-line if both
strin~s are known by the compiler to be 36 bits or
1 es s 1 n 1 e ng th) •

Testing bits in a short bit string: When a procedure
wishes to inquire if 1 or more bits in a short string
(<36 bits) are zero or non-zero., a common coding
practice is

i f subs t r (b i ts ., 4., 6) then •••

or

of substr(bits., 18., 9) --= 11 011 then • • •

THIS GENERATES INCREDIBLE CODE: in the first case
the code is precisely equivalent to

if index(substr(bits., 4., 6)., 11 111 b) --= 0 then •••

with the attendant calls to first compute the
substring and then search the resultant string for
non-zero bits., or in the second case to compute the
substring and then compare it with the constant string.

MULTICS SY STEM- PROGRAMMERS' Ml\NUA L SECTION BV.6 PAGE 6

Much cheaper, in both generated code and execution time,
would be

if bits & 11 000111111"b'' then •••

or

if (bits & 11 000111111 11 b) -= 11 0' 1 b then •••

4. Examining short bit string a few bits at a time.

Where a program must examine bits sequentially a common
sequence might be

do i = 1 to 9;

if substr(bits, i, 1) then •.•

end;

There is slightly more justification for this code than
that inveighed against above, but a much shorter,
cleaner (albeit less transparent) solution appears
below:

dcl b9 bit (9).,

f10 fixed bin(lO);

•••

b9 == 11 111 b• ~

do i

end;

= 1 to 9;

if bits & b9 then

f 10 = b9;

b9 = f10;

...

The statements f10=b9; b9=f10; effect the shifting
of the mask (Q.2) 1 bit to the right per iteration.
Extensions for larger field sizes should be relatively
obvious, as well as algorithmns for reversing the
direction in which the mask is shifted; the proof of
the method is derivable from a close reading of the
PL/ 1 manual.

MULTICS SYSTEM-PROGRAMMERS"' MANUAL SECTION BV.6 PAGE 7

5. Scanning character strings one character at a time.

If a program must examine a character string 1
character at a time, and then perhaps determine
whether the character is a member of a fairly limited
subset of the possible characters (and especially
if the probability of its being such a member is
relatively low)o the example which follows will
generally result in excessive running time for the
program: ·

dcl c1 char(1);

(indexing) 0 0 0

c 1 = subs tr (string I i 1 1) ;

if index(subset, c1) -= 0 then • • •

If a large number of characters are not going to be
in subset, and if they are easily grouped in
conti~uous ranges (~uch as the alp~abetic and
numeric characters 1n ASCII), the .!£-statements shown
below will be shorter in execution if such
eliminations are made:

if C 1) = 11 a"
then if c1 <= 11 z"

then go to alphabetic:

if c1 >= "A"
then if c1 <= "Z"

then go to upper_case;

if c 1 >= 11 011

then if c1 <= 11 911

then.go to numeric;

if index(subset, c1) -= O
then •••

If the subset is fai r1y sma 11 the rest of the tests
should probably be performed in, line:

if c1=s1
then go to member;

if C1=s2
then go to member;

• • 0

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BVo6 PAGE 8

(The ultimate in speed of subdivision is, of course,
a dispatch table that accounts for all the ASCII
characters 1 however, since it has 128°"entries., there
would seem to be a little overhead unless a fine
partitioning we re really needed.)

6. Operations with bit-strings of lengths between
36 and 72.

As was mentioned under General Considerations earlier.,
the EPL compiler does not do in-line operations with
bit-string fields larger than 36 bits; however, for
frequently referenced items in packed structures.,
significant reductions in code and access time may be
accomplished at the expense of padding the structures
they lie in., and then referring to the data with a
different structure containing double-precision
integer identifiers (or alternatively packing the other
items into a sub-structure at level 3). The following
example shows a declaration as it mi~ht be written., and
then as re-arranged and a "reference' structure declared
for access to the longer items: ~

dcl 1 slow based(p).,
2 uid bit(70).,
2 (time1, time2) bit (52),
2 item1 bit (6),
2 i tem2 b i t (3 6) ,
2 i tem3 bi t (18) ,
2 item4 bit(12),
2 i terns b i t (6) 1

As re-written:

dcl 1 padded based(p)
2 (pad1 bit(2)

uid bit (70)),

2 (pad2 bit(20)<.
ti me 1 bit (52 J),

2 (pad3 bit (20)
time2 bit(52).),

2 (item2 bit(36),
item1 bit(6)
item3 bit(18),
i tem4 bit (12) ,
items bit(6)
pad4 bit(30));

/-kwords 0-1 *I

/-kwords 6·•8*/

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BV.6 PAGE 9

dcl 1 access based(p),

Notes:

2 uid fixed bin(70),
2 tirne1 fixed bin(52),
2 tirne2 fixed bin(52),
2 packed,

3 (item2 bit(36),
item1 bit(6)
i tem3 bi t (1 8),
i tem4 bi t (12) ,
items bit(6)
pad4 bit(3□)51

· /*0-1*/
/*2-3*/
r-.'r4-S*/
/*6-8*/

a. Item2 was moved around so that as a bit string
it would not overlap word boundaries. (Other-·
wise an EPL II idiotic" reference would occur;
see BN.9 for further information about struc
ture packing •)

b. The structure as declared occupied 9 words;
however, if the structure were to be instead
an array of structures (adding dimensioning
parentheses after the level-1 iden;tifier),
36 bits more of padding would be required to
make the double precision items always lie on
even word addresses in all replications (the
compiler would automatically make this adjust
ment on references to the access structure,
but not on addressing calculations involving
the padded structure). In this regard, the
pointer returned in an EPL allocate statement
will always be pointing at an even-address word.
If references are made to the double-precision
items with an odd-address, the 645 will
automatically force it to the lower even
address, with generally deleterious results.

7. Testing fixed-point values.

While this topic is not directly related to strings
and string manipulation, it is relevant to the
production of unnecessary code: when a program
wishes to test a variable for zero/non-zero values,
an all-too-common sequence 1s as follows (assume
code is fixed bin(17)):

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BV .6 PAGE 10

if code then go to error;

where a cleaner way would require a very simple change:

if code -= 0 then go to error;

The code expansions appear below

case 1 case 2

lda code lda code
als 19 cmpa =0
anaq = v17/-1, 55/0 tze ,._.+2
tze ,._.+2 tra error
tra error

The als-anag instructions are solely for the purpose of
convertin~ the fixed point number (right-justified) into
a bit string of the same length as the precision of the
number (left-justified). Note that the literal
reference in the first case is two words, which is a
slower memory access than is required by the 1-word
literal in the 2nd case. (Unfortunately EPL is not
yet clever enough to realize that the 2nd sequence
could be reduced to

lda code
tnz error

Note especia 1 ly

if ... code then

error: • • 0

is not what it looks like; the code at error will
be executed only if the rightmost 17 bits of code
were all 1-s (see PL/1 manual for further informa
tion.)

8. Multi-conjunction .if-statements.

While this topic, like topic 7, does not directly
relate to calls to st~op_1 it is relevant to the
production and execution of rather gruesome instruc
tion sequences: specifically statements of the form

if (a rel b) & (c rel d) & ... then ••.

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BVo6 PAGE 11

Epitaph

where rel stands for any of the 8 comparison
operators'(=,-=, <, <=, >=, >, -<), and where
the 11 &11 may also be replaced by II f". For the case
of and conjunctions (11 &") much more efficient code
results by the replacement of the given statement
by

if a rtl b
then if c re 1 d

then if e w_ f
0 • •

The reason is that the compiler must create
1-bit bit-strings from the results of the relational
expressions, .QL or and them together, and then per
form the then-clause only if the result of ill the
operations leaves non-zero bit(s) in the temporary
test string. Thus, ill expressions are evaluated,
even if the value of any one being O or 1, (for
and and .QL respectively) ensures that no further
tests need by made. On the other hand, given an
ordering of the expressions such that the proper
branch is taken as early as possible, significant
speed-up in execution time may be obtained as
well.

for expressions joined by II I" in the .!.!-statement,
the equivalent restatement is

if a .r.tl b
then

doit:
else

• • •
if c re 1 d
then go to dolt;
else If e r.stl .f

then go to dolt:

Alternatively, by use of DeMorgan's theorem, one may
reverse the sense of each wand write the
statement in the expanded form for and conjunctions,
changin~ the last then to be a transfer around the
code which is really to be executed. (local
9.21Q-s are ch§ap.)

The night has been long,

ditto, ditto my song,

and thank goodness they're both

of them over.
Gilbert and Sullivqn -

" Iolanthe"

