
MULTICS SYSTEM-PROGRAMMERS' Ml\NUL\L

Identification

SECTION BZ.8.09 PAGE 1 ,

Published: 07/25/69

Format of PL/I Programs' I nterna 1 Representation
R. Freiburghouse, J. Mills

1 • Jntroduction

This document describes the format of the internal representation
of PL/I programs during their compilation. It does not
discuss the respresentation of declarations (the symbol
table) nor does it describe data bases which are unique
to one or two phases.

The internal representation discussed in this document
is produced by the parse and is later modified by the
semantic translator. However, the basic relationships
between the elements of this representation remain essentially
unchanged until it is converted into machine code by the
code generator. The detailed representation of each statement
is given_ in MSPM BZ.8.12 THE OUTPUT OF THE SYNTACTIC TRANSLATOR.

The representation is a structure consisting of various
kinds of components (nodes) which are linked to each other
by pointers. It may be considered to be basically a tree
structure containing back pointers and cross pointers.
The major types of nodes in this structure are briefly
described below:

symbol table nodes - represent the declarations of PL/I data.

block nodes - represent the block structure of the program.
created for procedures, begin blocks, and ON units.

group nodes - represent DO groups with specifications, these
nodes facilitate DO group optimization.

statement nodes - represent source statements and statements
created by the compiler.

operator nodes - represent the operations to be performed.

operand nodes - represent the operands of the program. After
the parse they represent only the syntax of the original
source program operands. The semantic translator replaces
these nodes with reference nodes which do convey the semantics
of the operands.

MULTICS SYSTEM-PROGRAMMERS"' MANUAL SECTION BZ.8.09 PAGE 2

reference nodes - represent the operands of the program
after the semantic trans lat ion. These nodes reference
t ,e symbol tab 1 e dee 1 a ration of the source ope rand. They
also contain the computations necessary to locate the
i tern at run time.

T!1e relationship between these nodes is shown in the example
which folla.r.rs. Note that the arrows represent pointers
and also that the example is somewhat simplified to retain
some measure of clarity.

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BZ.8.09 PAGE 3

ext: proc; dcl a(10), b(10);
Do i = 1 to 1 o;
a(i) = i+5 ;·
Do j = 1 to 10\
a(i) = a(i) + b(j);
end;
end;
begin; dcl x(100);
i = O;
x(5) = 4+i;
end;
end;

•
'!' symbol table

nod;?' for j

symbol table
no' for i

symbol table r;e for b

symbol table
Root ~ node for a

~block node ____--- symbol table :;,r proce~e · ~ node for x

group node ent~ck node·
for\1st Do\........___ ... __ 0 '1,stmnt f .r beg{n

~ ~ Assignment
Assignment ~
~ Assignment

~Do stmnt ~
group node ~ end
for 2nd D Assignmen

' ,v ~
· nd -~

f' Operator

b:f!n noi f~

end f ~
Reference Reference
node for node for

a(i) a(i)

Reference
riode for

b(J)

the expansion of a statement
showing operator and reference
nodes (other statements are-·
not expanded).

' i

MULT!CS SYSTEM-PROGRAMMERS' M4NUAL SECTION BZ.8.09 PAGE 4

Code Expansion

During the par?e and the semantic translation, a good
deal of code expansion occurs as operations which were
implied in the source program become explicit in the internal
representation of the programo This expansion is done
in the following ways:

1. By the addition of new statement nodes - e.~.,
the generation of prologue code, the expans:i.on
of ON statements, etc.

2. By the addition of more operations in some
computation tree already rooted in some statement
node.

Code Ordering

Compilation also results in code reordering. This is
done in the following ways:

10 Internal procedures and ON units will be
removed and placed at the end of the
procedure segment. The example shows how
the internal representation facilitates this.

2. Code insertions will be done into one of two
code sequences within some block. For this
purpose each block node contains a pointer to
the current end of the prologue and main code
sequences.

3. The reordering of operations within some
statement. This can be accomplished by the
appropriate linking and unlinking of branches
in the computation trees.

I mp lementat ion

The Block Node

Each source langL!age procedure, begin block, or ON unit;
and each compiler created procedure is represented

MULTICS SYSTEM-PROGRAMMERS' Ml\NUAL SECTION BZ.R.09 PAGE 5

by a block node in the internal representation. Block nodes
are structured as indicated :i.n the fol low:i.ng example:

" ' ' \. BLOCK NODE
LEVEL N~

\__
\

.........

~

' \
\

BLOCK NOOE ...,._
LEVEL N -----/~ I\'\----

\__
BLOCK NODE-------)>..,,, -....BLOCK NODE
LEVEL N-1 LEVEL N-1 --->--

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BZ. 8. 09 PAGE G ~

Definition of a Block Node

dcl 1 block based(p)

2 node_Jype fixed bin(15).,

2 block_type fixed bin(15).,

2 last_auto_loc fixed bin(31).,

2 bits.,

3 prefix bit(12).,

3 recursive bit(1).,

3 main bit(1).,

3 descriptors_used bit (1) ,

2 father ptr,

2 brother ptr.,

2 son ptr.,

2 group ptr,

2 declaration ptr.,

2 end_declaration ptr,

2 context ptr,

2 allocate_stmnt ptr.,

2 open_stmnt ptr,

2 entry_list ptr.,

2 checked_ list ptr.,

2 prologue ptr,

2 end_prologue ptr.,

2 main ptr,

-~

MULTICS SYSTEM-PROGRAMMERS' rviANUAL SECTION BZ.8.09 PAGE 7

2 end_main ptr,

2 auto_adj_ loc ptr,

2 first_temp fixed bin(31),

2 last_temp fixed bin(31),

2 max_arg_no fixed bin(15),

2 level fixed bin(15),

2 spare fixed bin(15),

2 spare_ptr ptr;

node tvoe - is a constant which identifies this node as a
block node. See Appendix 1.

block type - has any of the values:

1 • root block

2. externa 1 procedure

3. internal procedure

4. begin block

5. on unit
\

' last auto loc - stack frame allocation counter used by the
code generator only.

prefix - is a bit string whose bits represent the condition
prefixes. A va 1 ue of 11 111 b means the condition is set.

Bit ,
2
3
4
5
6
7
8
9-12

Meaning

underflow
overflow
zerodivide
fixed overflow
conversion
size
subscriptrange
stringrange
unused

MULTICS SYSTEM-PROGRAf'JVll1ERS' r-¼NUAL SECTION BZ.8.09 PAGE 8

recursive - equal to 11 111 b if the recursive option v,:as specified
on an external procedure statement.

main - unused.

descriptors used - equal to "1"b if this block uses parameter
descriptors.

father - is a pointer to the block node to which this node is
immediately internal.

brother - is a pointer to a block node at this same nesting level.

2.QD. - is a pointer to the first immediately contained block.

group - is a pointer to the first DO group node in this block.

declaration - is a pointer to the first symbol table node which
resulted from a declaration in this block. All such declarations
are chained and each contains a pointer to this block node.

end dee laration - is a pointer to the end of the dee laration 1 ist
which is associated with this block. It is used to facilitate
the adding of declarations to the block.

context - ptr to a list of nodes which represent contextual
information about identifiers in this block. This information
is recorded by the parse and processed by the declaration
processor. After declaration processing the coratext field
is used to point to a list of temporary nodes for the
block.

allocate stmnt - ptr to the first of a list of all the allocate
statement nodes in the block.

open stmnt - ptr to the first of a list of all the open statement
nodes in the block.

entry ljst - ptr to the first of a list of all the entry and
procedure statement nodes :tn the block.

checked list - is a pointer to a list which represents the
identifiers which appeared in this block's check condition
prefix. Each node of the list is declared to be:

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BZ.8.09 PAGE 9

dcl 1 check_node based(p).,

·2 check_nocheck bit(1)., I* ="1 11 b means check *I

2 next ptr., /* ptr to next check_node

2 identifier ptr., /* to token-table node for
checked identifier*/

prologue

end prologue.,
are pointers to the beginnings and ends
of lists of statements • .!!19.in

end main

auto adj loc - stack frame allocation counter for prologue.
Used by code generator.

first temp - beginning of temp storage area.

last temp - last used area in temp storage.

level - nesting level of block.

spare and spare ptr - unused.

The Group Node

Each source language DO statement with specifications
is represented by a·group node. Group nodes are constructed
by the parse and are used by the DO processor to optimize
the code within the DO group. Group nodes can be structured
as indicated in .the fol lowing example:

~ f'-:-,..
\ \'

\ '
' ' ' GROUP NODE > GROUP NODE· :,>

L~EVEL~~_ LEVEL N

'_ -
' --' , ___ __

GROUP NODE ___ "'-. GROUP NODE ---"
LEVEL N-1 / LEVEL N-1 1/

*I

MULTICS SYSTEM-PROGRAMMERS" Ml\NUAL SECTION BZ.8.09 PAGE 10

Definition of the Group Node

dcl 1 group based(p),

2 node_type fixed,

2 CV_ list ptr,

2 father ptr,

2 brother ptr,

2 son ptr.,

2 head ptr.,

2 tail ptr.,

2 1 is t ptr;

node type - is a constant which indicates that this is a group
node. See Appendix 1.

cv list - is a pointer to a list of nodes which are used to
transmit information about the control variable of the DO
statement from the parse to the semantic translator.

father - is a pointer to the group or block node to which this
group is immediately internal.

brother - is a pointer to a group node at this level.

son - is a pointer to the first group node which is immediately
internal to this group.

head - is a pointer to the statement node representing the DO
statement.

tai 1 - is a pointer to the statement node of the end statement
which marks the end of the group.

list - is a pointer to
the optimizer.

the data base built during the execution

The Statement Node

Each source language statement or compiler generated statement
is represented by a statement node. The statement node

of

MULTICS SYSTEM-PROGRAr+iERS' fv¼Nl'AL SECTION BZ.8.09 PAGE 11

contains information which is commo·n to al 1 types of statements.
The specific operations to be performed by the execution
of the statement are represented by a computation tree.
A computation tree is a structure consisting of operator
and reference nodeswhich has its root in the statement
node. The statement nodes representing the source statements
of some block are linked together into a chain. This
chain can be considered to have two parts:, the prologue
part and the main part. The main part follows the prologue
part. The block node contains pointers to each part of
the chain so that each part can easily be updated by the
addition or removal of nodes.

Definition of a Statement Node

dcl 1 statement based(p),

2

2

2

2

2

2

2

2

2

2

2

2

node_type fixed bin(15),

stmnt_type fixed bin(15),

reference_count fixed bin(15),

source_id fixed bin(31),

sub_stmnt_id fixed bin(15),

prefix bit(12),

back ptr,

next ptr,

next_of_kind ptr,

root ptr,

labels ptr,

reference_list ptr;

node type - is a constant which indicates that this is a
statement node. See Appendix 1.

stmnt type - indicates the kind of sta_tement. See Appendix 2.

reference count - this is a count of the references to this
statemeht.

MULTICS SYSTEM-PROGRAMMERS' fvlANUA L SEr,TJON BZ.8.09 PAGE 12

source id - contains, in the left 16 bits, the number of the line
on which the statement appeared. The right 15 bits contain the
nun'ber of the statement on that 1i ne.

sub stmnt id - currently unused but reserved for use in identifying
compiler produced statements.

prefix - is a bit string whose bits represent the condition
prefixed. A value of 11 111 b means the condition is set.

back - is
statement

next - is
l ist.

a

Bit

1
2
3
4
5

7
8
9-12

pointer
1 is t.

a pointer

to the

to the

previous

Meaning

underflow
overflrJw
zerodivide
fixed overflow
conversion
size
subscript range
stringrange
unused

statement node in

next statement node in the

the

statement

next of kind - for entry or procedure, open, and allocate
statements this is a pointer to the next statement of that kind
in this block.

root - is a pointer to the computation tree whj_ch repr-esents the
operations to be performed by the execution of this statement.

labels - is a pointer to a list of nodes representing the labels
written on this statement.

The declaration of these nodes is:
I

dcl 1 label node based(p), -
2 next ptr,

2 reference ptr;

MULTICS SYSTEM-PROGRAMMERS' rvtANUAL SECTION BZ.8.09 PAGE 13

where: next points to the next label and

reference points to a token-table node
or tree representing the label.

reference list - is a pointer to a data base built and used
by the optimization phase. The pointer is null if this
statement is not referenced and none of its labels is
passed as an argument or assigned to a label variable.

Computation Trees

The operations which are to be performed for the execution
of a statement are expressed as a computation tree consisting
of operator and various kinds of operand nodes.

The meaning of each of the fields in these nodes depends
on whether or not the semantic translation has been done.
In the discussion of the nodes we sha;l try to describe
the fields both after the parse and after the semantic
trans lat ion.

The syntaxes of the intermediate representation for each
· PL/I source stateme·nt., after the parse and after semantic
translation., are given in Sections BZ.8.12., "OUTPUT OF
THE SYNTACTIC TRANSLATOR" and BZ.8.13 11 0UTPUT OF SEMANTIC
TRANSLATION''.

owrator Nodes

Operator nodes represent source operations or operations
derived from or implied by the source. After the parse
they largely represent source PL/I operators., but the
semantic translator modifies these operators to reflect
their implementation in terms of library calls or intermediate
operators. The format of the operator node allows an
operator to have any number of operands.

After the parse an operand is a token-table node. if the
source program operand was a simple identifier or a constant~
an operand node if the source program was a construct
of the form a()p or an operator may be an operand.

MULTICS SYSTEM-PROGRAMMERS .. MANUAL SECTION BZ.8.09 PAGE 14

After semantic translation, computation trees consist
of operators whose operands are:

reference nodes

string-reference nodes

temporary nodes

entry-attribute blocks

label-attribute blocks

parameter nodes

constant nodes

operator nodes

Of the nodes mentioned so far, the following are defined in
MSPM BZ.8.10., "THE FORflt¼T OF DECLARATIONS".

token-table nodes

entry-attribute blocks

label-attribute blocks

constant nodes

Binary operators have three operands, the third being
the description of the result. This facilitates the allocation
of temporaries, the sharing of common subexpression values,
and the representation of conversions.

Definition of an O~rator Node

dcl 1 operator based(p).,

2 node_type fixed bin(15).,

2 number fixed bin(15).,

2 back ptr.,

MULTICS SYSTEM-PROGRAMMERS~ f,l\l\NUAL SECTION BZ.8.09 PAGE 15

2 op_code

2 qualifier

2 operand(n)

fix bin(15).,

fixed bin(15).,

ptr;

node type - is a constant indicating that this is an operator
node. See Appendix 1.

number - is! the number of operands and is equivalent to n.
i

back - is a pointer to the node which references this node.
It is set and used by the optimizer.

op code - is a constant identifying the operation to be
performed. The values are given in Appendix 3.

qualifier - currently unused.

operand(n) - is an array of pointers to the operands of this
operator.

Operand Nodes

The parse produces an operand node., or list of operand
nodes., for al 1· source operands other than for a single
unqualified identifier or constant. In other words -
it produces an operand node for a subscripted reference.,
and for a procedure reference with arguments (which it
can not distinguish from a subscripted reference).

Definition of the Operand N.ode

dcl , operand based(p).,

2 node_type fixed bin(15).,

2 number fixed bin(15).,

2 identifier ptr.,

2 list(n) ptr;

MULTICS SYSTEM-PROGRAMMERS" Ml}.NLJAL SECTION BZ.8.09 PAGE 16

node type - a constant which identifies this node as an operand
node. See Appendix .1 •

number - the number of expressions in the parenthesized list which
follows the source identifier. If no such list exis·ts its value
is zero. It is equivalent ton.

identifier - a pointer to the token-table entry for the identifier
which composes this operand.

list(n) - an array of pointers to computation trees which
represent the expressions in the list. These expressions are
either subscript expressions or arguments to a function but this
is not known at the time of the parse.

Reference Nodes

Each source operand which consists of a reference to a
variable will be transformed by the semantic translator
into a reference node (or string - reference node). This
reference node will be unique to the particular reference
only if the reference is subscripted, derived from a substr
bui 1tin function, or pointer qualified. In all other
cases the reference node will be connected to the symbo1
table and will be shared by all references. Reference nodes
serve to carry the accessing computations which are required
to locate the operand at run time. Offsets may be zero
or constant or variable.

Definition of a Reference Node

dcl 1 reference based(p),

2 node_type fixed bin(15),

2 const units_offset fixed bin(31),

2 units_offset ptr,

2 symbol ptr,

2 bits,

3 array_ref bit(1);

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BZ.8.09 PAGE 17

node type - a constant which identifies this node as a
reference node. See Appendix 1.

const units offset - :his is the constant part of the
offset express1on which locates the variable. This offset
is expressed in addressable uni ts (words) and desc r:t bes
the distance from the origin of the level one containing
aggregate.

units offset - is a pointer to a computation tree giving the
variable part of the offset expression.

symbol - is a pointer to an attribute block of a symbol
table entry.

array ref - if "1 11 b then the reference is to an array rather
than an element of the array.

String-Reference Nodes

A string-reference node is the reference node created
by the semantic translator for references to strings and
structures.

Definition of a String-Reference Node

dcl 1 string_reference

2 node_type

2 const_units_offset

2 units_offset

2 symbol

2 fractional_offset

2 current_s:i.ze

2 bits,

3 padded

3 varying

based(p).,

fixed bin(15).,

fixed bin(31) .,

ptr.,

ptr.,

ptr.,

ptr,

bit(1).,

bit(1).,

MU_LTICS SYSTEM-PROGRAMMERS .. Ml\NUAL SECTION BZ.8.09 PAGE 18

3 array_ref bit(1)_

2 const current_size fixed bin(31)_

2 const_fractional_offset fixed bin(31) 1

noce tyge - is a constant which identifies this node as a string
reference node. See Appendix 1.

const units offset - this is the constant part of the
offset expression which locates the variable. This offset is
expressed in addressabl_e units (words) and describes the distance
from the origin of the level one containing aggregate.

units offset - is a pointer to a computation tree giving the
variable part of the offset expression.

svmboJ - is a pointer to an attribute block of a symbol table
entry.

fractional offset - is a pointer to an expression which describes
the bit offset. The bit offset. is the number of bits between the
origin of the variable and the previous boundary. If the bit
offset is constant this pointer is null.

current size - is a pointer to an expression which describes the
current size of a string variable. The value is measured in
characters or bits depending on the type of the string.

padded - if equal to "1"b then the remainder of the last word
of storage for this variable is not otherwise used.

varving - if equal to 11 111 b then this is an access to a varying
string.

array ref - if equa 1 to 11 11' b then the ref~rence is to an array
rather than to an element of the array~

const current size - this is the current length of the string
measured in bits or characters. If the current length is variable
this value is zero.

const fractional offset - this is the number of bits~ between the
origin of the variable and the previous word boundary. If the
bit offset is variable this value is zero.

MULTI CS SYS TEM-PROGR/:',MMERS ' ~-NUA L SECTION BZ.8.09 Pl'.\GE 19

Temporary Nodes

A temporary node represents the output of some operator.
Unless their storage class is automatic they will be
allocated storaae at the discretion of the code generator.
Their values are assu11ed to be destrcyed upon complet:ton
of the execution of a statement. Automatic temporaries
are identical to compiler created automatic variables
and their values are assumed to be preserved throughout
the execution of the b 1 ock.

Temporary nodes~ other than automatic., are shared by more
than one operator. This sharing is done for efficiency
reasons and does not affect the logical meaning of a temporary.

Definition of. the Temporary Node

dcl 1 temporary_ node based(p).,

2 node _type fixed bin(15).,

2 data _type fixed bin(15).,

2 class fixed bin(15).,

2 class _offset fixed bin(31).,

2 size fixed bin(31).,

2 scale fixed bin(15).,

2 boundary fixed bin(15).,

2 const_storage fixed bin(15).,

2 var:table_size ptr.,

2 descriptor ptr.,

2 next ptr;

node tyQe - is a constant which identifies this node as a
temporary node. See Appendix 1 •

data type - is a constant which specifies the data attributes
of the temporary. The possible values and meanings are given
in Appendix 4.

MULTICS SYSTEM-PROGRAMMERS' r-¾NUAL SECTION BZ.8.09 PAGE 20

class - is a constant which specifies the storage class of the
tem~orary. The values and meanings are:

a) 1 automatic - allocate by block prologue
b) 10 temp - allocated and re-used for each statement

class offset - the location of this temporary as determined by
the storage allocator or code generator.

size - this is the precision of arithmetic temporaries and
length of string temporaries.

scale - is the scale of fixed point temporaries.

boundary - · indicates the starting address requirements of the
temporary. The values and meanings are:

1 any bit
2 character boundary
3 word boundary
4 even word boundary
5 address O mod 4
6 address O mod 8
7 address O mod 16

const storage - the amount of storage, measured in words, required
by this value. If the size of the temporary is variable this
field is zero.

variable size - an expression which describes the length, measured
in bits or characters, of this temporary value. ·1f the size is
constant this field is null.

descriptor - a pointer to the argument descriptor image created
for this value by the storage allocator. This pointer is null
if no descriptor is required.

next - points _to the next temporary node in the pool of temporary
nodes for a given block.

Parameter Node

The parameter node represents two distinct objects in
the internal representation.·

MULTICS SYSTEM-PROGRAMMERS' t,,\ANUAL SECTION BZ.8.09 PAGE 2i

a)

b)

Parameter nodes whose number is zero represent a
locator variable. During semantic translation the
locator variable (p) which qualifies a based
reference (p -> x) replaces all occurrences of
parameter noqes within the size and offset expressions
of the qualified reference (x). This mechanism
implements the refer option and allOW's the fractional
offset express ion of based or parameter una 1 igned
strings to reference the bit value of their
qualifying locator variable.

Parameter nodes whose number is -1 are used to
describe a 11 .register" of the code generator. This
register is assumed to contain the word offset
derived from evaluation of a fractional offset
expression. The fractional offset expression has a
two part output - a bit and a word part. The word
offset expression contains a parameter node which
serves as a reference to the word part of the
evaluated fractional offset.

Definition of a Parameter Node

dcl 1 parameter

2 node_type

2 number

based(p).,

fixed bin(15).,

fixed bin(15);

node type - is a constant indicating this is a parameter node.
See Appendix 1.

number - an identification code whose use is described above.

I
I
I
I. '.

MULTICS .SYSTEM-PROGRAMMERS~ MANUAL SECTION BZ.8.09 PAGE 22

Y&~

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26

APPENDIX 1

NODE TYPES

MEAN! NG

block node
statement node
operator node
operand node
temporary node
symbol•table node
temporary-attribute block
data-attribute block
condition-attribute block
file-attribute block
initial-link node
entry-attribute block
token-table node
reference node
string-reference node
constant node
structure-size node
local-offset node
array-attribute block
label-attribute block
parameter node
descriptor block
group node
rand node
address node
cv-node

..

MULTICS SYSTEM-PROGRAMMERS- M4NUAL SECTION BZ.8.O9 PAGE 23

VAWE

0 ,
2
3
4
5
6
7
8
9

10
12
13
14
15
16
17
18
19
20
21
2Z

. 23
24
25
26
27
28
29
30
31
33
34
35

APPENDIX 2

STATEMENT TYPES

STATEMENT

unknown
a 1 locate
assignment
begin
ca 11
close
declare
delay
delete
display
do
end
entry
exit
format
free
get
rito
loca.te
nu 11
on
open
procedure
put
read
return
revert
rewrite
signa 1
stop
unlock
wait
write

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BZ.8.09 PAGE 24

VALUES

1
2
3
4
5
6

10
11
12
13

20
21
22

30
31
32
33
34
35

40
41
42
43
44
45
46,
47
48

60
61
70
71
72

APPENDIX 3

VALUES FOR OP CODES

(SEE BZ.8.11 FOR FULL DOCUMENTATION)

NAME

add
sub
mult
div
exp
negate

and-bits
or-bits
not-bits
single--cat

assign
assign-by-name
assign-with-size-ck

less-than
greater-than
equal
not-equal
less-or-equal
greater-or-equal

jump
jump-true
Jump-false
Jump-if-lt
Jump-if-gt
Jump-if-eq
1ump-if-ne
Jump-if-le
jump-if-ge

std-call
validate call
entry
std ... return
func-return

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BZ.8.09 PAGE 25

VALUES

81
82

90
91
92
93
96
97
98
99

102

100
101

APPENDIX 3 (cont.)

NAME

dot
pointer

Join
a 1 lot-based
free-based
ex-prologue
copy-words
on loc-name
enable-on
revert-on
signal-on

dope-copy
dope-f i 11

MULTICS SYSTEM PROGRAr+1ERS"' MANUAL SECTION BZ.8.09 PAGE 26

VALUES ,
2
3
,4
5
6
7
8

21
22
23
24
25
26
27
28

31
32

41
42

51
52

60
61

72

80
81
82
83
84

APPENDIX 4

DATA TYPES

MEANING
real fixed binary single
real fixed binary double
real fixed decimal single
real fixed decimal double
rea 1 f 1 oat b 1 nary s i ng 1 e
real float binary double
real float decimal single
real float decimal double

complex fixed binary single
complex fixed binary double
complex fixed decimal single
complex fixed decimal double
complex float binary single
complex float binary double
complex float decimal single
complex float decimal double

non-varying character string
varying character string

non-varying bit string
varying bit string

label variable, local values only
label variable, any values permitted

pointer variable
offset variable

entry variable

structure
structure created for varying strings
cell
file name
area

,._

