
Proceedings of the 1985 Rochester Forth Conference

Implementing Forth for the Multics Operating System
Michael A. Pandolf

Principal Software Engineer
Cambridge Information Systems Laboratory

Multics Development Center
Honeywell Information Systems

4 Cambridge Center
Cambridge, MA 02142

199

Like many tools and subsystems on Multics, Forth resulted
from a wish of one of its users (in this instance one of
its developers) to add to Multics's range of computation.
After a period of development and some local exposure, such
spontaneously generated software enters a stage of peer
review and wider exposure that enables it to be considered
for product review. Currently, a version of Forth that
follows the design as described in the "fig-FORTH
INSTALLATION MANUAL" by the FORTH INTEREST GROUP is in the
local exposure state at MDC/CISL and is not yet scheduled
for peer or product review.

Multics has traditionally been a very willing host for the
simulation or emulation of other programming environments.
One reason for this is a library rich in programming tools
that is easily accessible when programming in the Multics
native language, PL/I. However, programming at a lower
level than PL/I (and its subroutine library) results in low
level support structures that are not altogether friendly
without high-level support. While implementing a version
of Forth for Multics, the author found several of these
support structures that directly influenced the design of
the resultant subsystem, including the virtual memory
itself, Multics object segment structure, and the native
I/O system.

The Forth dictionary is a read/write/execute structure.
Although Multics allows a segment to have all three access
modes simultaneously specified, write permission and
execute permission are, as a rule, mutually exclusive. All
language translators, including the assembler, produce pure
code; Multics runtime expects this rule to be in effect.
The use of pure code is one of the assumptions made by the
storage system as it makes a segment known to a process;
the actual segment (not a copy of the segment) is added to
one's address space. This permits nearly all code in the
system to be completely shareable. Modification of the
dictionary contents while executing Forth discourages the
dictionary from being shared. To circumvent this feature,
the minimal default ~ictionary is copied into a per-process
temporary segment and used there.



200 The Journal of Forth Application and Research Volume 3 Number 2

A more critical problem related to the dynamic nature of
the dictionary and the Multics expectation of pure code is
Multics runtime support. Multics runtime support expects
that executable segments have a particular structure.
Although Forth can provide all data manipulations using
code within the dictionary, it must invoke the supervisor
to perform I/O. In Multics, the supervisor is invoked
using the same mechanism as any unprivileged call. The
ring of the calling code segment is compared to the ring of
the target; the hardware recognizes the call as one that
invokes the supervisor and adjusts several registers
accordingly. This call/return mechanism depends upon the
existence of several memory-resident data structures, which
includes the code segment's external reference definition
section. It takes the addition of only a few words to the
dictionary to overwrite the definition section. Multics
does not employ a special trap instruction to invoke its
supervisor thereby requiring that I/O be performed with a
call at some point. One method of accomplishing this is
provided by the PL/I environment's condition handling
mechanism. This method simulates the more traditional
supervisor trapping construct by having Forth execute one
of the unused trap instructions causing a PL/I on-unit to
be activated. Though rather elegant, a mechanism with less
overhead is desired because condition handling would cause
the supervisor to be invoked to verify that the fault was
not system critical before passing it on the the user ring
environment where further processing would take place. A
faster, more direct bit of hackery is employed, instead.
In Multics Forth, a gateway written in assembler provides
an interface with Multics runtime on one side and with the.
Forth environment on the other side. The Forth interface
of the gateway reserves a pointer register which provides
the only way back into Multics from Forth. The gateway
also reserves one pointer for its own storage, cutting only
slightly into the available register compliment for Forth.
The PL/I interface is used by the Multics "forth" command
after first creating an address space for the Forth runtime
structures. The gateway stores register contents upon
invocation from either side, essentially swapping two
different environments.

The remaining design issues are, primarily, esthetic
concerns but there is a Multics-like way of doing things
that tends to flavor its facilities. From the point of
view of a Multics programmer, it is desirable to exploit
the segmentation offered by Multics. While the model used
for Multics Forth runs in linear memory, the protection
offered by separate segments for stacks and I/O buffers
encourages one to divide up the linear address space. The
data structures are intuitively distributed to one of four
segments: a data stack segment, a return stack segment, a
dictionary segment, and a utility storage segment. Each
segment has a capacity of 256K words (lMbyte) and is



Proceedings of the 1985 Rochester Forth Conference 201

physically isolated from any other segment. In this way,
stack overflows, stack underflows, and some types of
invalid addressing are hardware detectable and do not
effect other data, either related or unrelated. Multics
can support Forth running in either segmented or
nonsegmented modes with equal ease; there is no system
imposed bias on the choice.

The only important design issue in address architecture
concerns the address itself. When running in a single
segment, addresses are eighteen bit quantities that
reference a location in the segment. When running in
segmented mode, addresses are at least 33 bits wide. Forth
manipulates addresses as integers, so the address must be
capable of being used in addition and subtraction. A
complete Multics pointer value is not suitable for use as a
Forth address because it is two machine words long, must be
even-word aligned, and its segment number and word offset
fields are not easily manipulated. A Multics packed
pointer is one word long and useable with one restriction:
the bit-within-word value, found in the high order six bits
must be set to zero thereby limiting the address to specify
word boundaries only. The offset field is in the low
eighteen bits of the word and lends itself to simple
numeric manipulation. There is a generic problem with
storing a virtual (segmented) address in Multics: segment
numbers are dynamically assigned and are valid only within
process boundaries. Permanent storage of these addresses
requires a conversion method at startup and/or shutdown
time that is not necessary when referencing offsets only.
Maclisp on Multics stores segmented addresses and performs
an address conversion. Forth could do the same, although
the need for such a facility has not arisen. The
complexity added by running Forth in a segmented
environment is minor compared to the advantage obtained
with partitioned data; therefore, the Multics
implementation is segmented.

Terminal access within Forth is based upon a system
developed for the Multics Emacs text editor. Both receive
input one character at a time and perform their own
editing. This is in contrast to Multics's line-at-a-time
processing where a line of text is built in the
communications processor and sent to the central system.
Character-at-a-time I/O to a program has been shown to have
a deleterious effect on Multics's response time when used
by several processes simultaneously. This is because
character processing is intended primarily to be performed
by communications processors, whereas character-at-a-time
processing involves the central system. A solution
developed for Emacs instructs the communications processor
to echo and build a buffer of uninteresting characters and
inform the central system when an interesting one comes
across. This mode of communications, called "echo



202 The Journal of Forth Application and Research Volume 3 Number 2

negotiation," is the standard mode of communications for
Forth.

Disk access for Forth can be considered to be simulated.
Forth does not reference a disk drive directly. When
invoking the forth command, one is allowed to specify a
segment that is used as a one megabyte disk. Reading in a
disk block actually reads in part of the segment.
Remembering that the system makes no distinction between
main memory and disk storage, the changes made to the
segment in the course of the Forth session will be
reflected on a physical disk. The group of segments used
as Forth disks can be arranged as a library of disks at the
Multics command level.

The runtime structure of the Multics Forth environment
begins with the invocation of the forth command. The
command program is written in PL/I and serves as the
monitor base for the rest of the system. It optionally
takes as its arguments the names of Multics segments to be
used as virtual disks. After obtaining temporary storage
segments for its own structures and for the four segments
Forth requires, it loads a copy of the default dictionaty
into one of the segments. Finally, it calls the gateway
program: forth bootstrap. This program is written in
assembler and has as its basic functions the saving of
register contents from the PL/I environment, the transfer
of addresses from automatic storage in the forth command to
hardware registers (most notably pointers to the stacks and
utility area), and transfers to the dictionary. The
dictionary is coded in assembler and is roughly 1.5K words
long. It contains the words necessary to load the rest of
Forth from the virtual disks identified at command time.

To summarize, under the Multics operating system Forth runs
as a low level program contained within four segments. Its
interface with Multics is through a gateway program that
transfers back to the PL/I environment. The PL/I program
base forwards its I/O requests to the Multics supervisor
through standard subroutine calls. Forth communicates to
the user through the process's terminal I/O channel and
uses segments as virtual disk storage. The system is
currently under development.




